Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 10(1): 176-183, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38292598

ABSTRACT

The structural determination of natural products (NPs) can be arduous because of sample heterogeneity. This often demands iterative purification processes and characterization of complex molecules that may be available only in miniscule quantities. Microcrystal electron diffraction (microED) has recently shown promise as a method to solve crystal structures of NPs from nanogram quantities of analyte. However, its implementation in NP discovery remains hampered by sample throughput and purity requirements, akin to traditional NP-discovery workflows. In the methods described herein, we leverage the resolving power of transmission electron microscopy (TEM) and the miniaturization capabilities of deoxyribonucleic acid (DNA) microarray technology to address these challenges through the establishment of an NP screening platform, array electron diffraction (ArrayED). In this workflow, an array of high-performance liquid chromatography (HPLC) fractions taken from crude extracts was deposited onto TEM grids in picoliter-sized droplets. This multiplexing of analytes on TEM grids enables 1200 or more unique samples to be simultaneously inserted into a TEM instrument equipped with an autoloader. Selected area electron diffraction analysis of these microarrayed grids allows for the rapid identification of crystalline metabolites. In this study, ArrayED enabled structural characterization of 14 natural products, including four novel crystal structures and two novel polymorphs, from 20 crude extracts. Moreover, we identify several chemical species that would not be detected by standard mass spectrometry (MS) or ultraviolet-visible (UV/vis) spectroscopy and crystal forms that would not be characterized using traditional methods.

2.
Org Lett ; 26(5): 1000-1005, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38295154

ABSTRACT

Medium-sized rings (8-11-membered cycles) are often more challenging to synthesize than smaller rings (5-7-membered cycles) due to ring strain. Herein, we report a catalytic method for forming 8- and 9-membered rings that proceeds via the intramolecular Friedel-Crafts reactions of vinyl carbocation intermediates. These reactive species are generated catalytically through the ionization of vinyl toluenesulfonates by a Lewis acidic lithium cation-weakly coordinating anion salt.

3.
J Am Chem Soc ; 145(46): 25080-25085, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37948671

ABSTRACT

Comparison of biosynthetic gene clusters (BGCs) found in devastating plant pathogens and biocontrol fungi revealed an uncharacterized and conserved polyketide BGC. Genome mining identified the associated metabolite to be treconorin, which has a terpene-like, trans-fused 5,7-bicyclic core that is proposed to derive from a (4 + 3) cycloaddition. The core is esterified with d-glucose, which derives from the glycosidic cleavage of a trehalose ester precursor. This glycomodification strategy is different from the commonly observed glycosylation of natural products.


Subject(s)
Polyketides , Terpenes , Multigene Family , Fungi/genetics
4.
ACS Omega ; 8(15): 13899-13910, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37091395

ABSTRACT

Many marine algae occupy habitats that are dark, deep, or encrusted on other organisms and hence are frequently overlooked by natural product chemists. However, exploration of less-studied organisms can lead to new opportunities for drug discovery. Genetic variation at the individual, species, genus, and population levels as well as environmental influences on gene expression enable expansion of the chemical repertoire associated with a taxonomic group, enabling natural product exploration using innovative analytical methods. A nontargeted LC-MS and 1H NMR spectroscopy-based metabolomic study of 32 collections of representatives of the calcareous red algal genus Peyssonnelia from coral reef habitats in Fiji and the Solomon Islands revealed significant correlations between natural products' chemistry, phylogeny, and biomedically relevant biological activity. Hierarchical cluster analysis (HCA) of LC-MS data in conjunction with NMR profiling and MS/MS-based molecular networking revealed the presence of at least four distinct algal chemotypes within the genus Peyssonnelia. Two Fijian collections were prioritized for further analysis, leading to the isolation of three novel sulfated triterpene glycosides with a rearranged isomalabaricane carbon skeleton, guided by the metabolomic data. The discovery of peyssobaricanosides A-C (15-17) from two Fijian Peyssonnelia collections, but not from closely related specimens collected in the Solomon Islands that were otherwise chemically and phylogenetically very similar, alludes to population-level variation in secondary metabolite production. Our study reinforces the significance of exploring unusual ecological niches and showcases marine red algae as a chemically rich treasure trove.

5.
Org Lett ; 25(9): 1547-1552, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36827601

ABSTRACT

Xyloketal B is a pentacyclic fungal marine natural product that has shown potential for the treatment of diseases such as Alzheimer's disease and atherosclerosis. Herein, we describe the first asymmetric synthesis of this natural product, which relies on a chemoenzymatic strategy. This approach leverages a biocatalytic benzylic hydroxylation to access to an ortho-quinone methide intermediate which is captured in a [4 + 2] cycloaddition to stereoselectively yield a key cyclic ketal intermediate enroute to (+)-xyloketal B. The relative configuration of this intermediate was rapidly confirmed as the desired stereoisomer using MicroED. To complete the synthesis, a second ortho-quinone methide was accessed through a reductive approach, ultimately leading to the stereoselective synthesis of (+)-xyloketal B.


Subject(s)
Indolequinones , Pyrans , Stereoisomerism
6.
Org Lett ; 22(17): 6724-6728, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32820938

ABSTRACT

Few nucleoside-derived natural products have been identified from animals, despite the ubiquity of nucleosides in living organisms. Here, we use a combination of synthesis and the emerging electron microscopy technique microcrystal electron diffraction to determine the structures of several N3-(ß-glucopyranosyl)uric acid derivatives in Caenorhabditis elegans. These noncanonical gluconucleosides further integrate an ascaroside moiety, for which we present a shortened synthetic route. The production of a phosphorylated gluconucleoside is influenced by evolutionarily conserved insulin signaling.


Subject(s)
Caenorhabditis elegans/chemistry , Nucleosides/chemistry , Uric Acid/chemistry , Animals , Microscopy, Electron, Transmission , Molecular Structure , Nucleosides/metabolism , Signal Transduction
7.
Chem Commun (Camb) ; 52(64): 9945-8, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27440397

ABSTRACT

We report herein that symmetrical and non-symmetrical N-heterobiaryls are produced by a potassium tert-butoxide-mediated dimerization of heterocyclic N-oxides. The reaction is scalable and transition metal-free, and can be carried out under thermal and microwave conditions. Preliminary mechanistic studies point to the involvement of radical anionic intermediates arising from the N-oxide substrates and potassium tert-butoxide.

8.
J Am Chem Soc ; 138(27): 8408-11, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27347688

ABSTRACT

We report herein a simple, additive- and metal-free, photoinduced, dual C-H/C-X borylation of chloro-, bromo-, and iodoarenes. The reaction produces 1,2- and 1,3-diborylarenes on gram scales under batch and continuous flow conditions. The regioselectivity of the dual C-H/C-X borylation is determined by the solvent and the substituents in the parent haloarenes.


Subject(s)
Boron/chemistry , Halogens/chemistry , Hydrocarbons, Aromatic/chemistry , Photochemical Processes , Catalysis , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...