Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Hortic Res ; 11(5): uhae076, 2024 May.
Article in English | MEDLINE | ID: mdl-38752224

ABSTRACT

Frequent spring frost damage threatens temperate fruit production, and breeding of late-flowering cultivars is an effective strategy for preventing such damage. However, this effort is often hampered by the lack of specific genes and markers and a lack of understanding of the mechanisms. We examined a Late-Flowering Peach (LFP) germplasm and found that its floral buds require a longer chilling period to release from their dormancy and a longer warming period to bloom than the control cultivar, two key characteristics associated with flowering time. We discovered that a 983-bp deletion in euAP2a, an APETALA2 (AP2)-related gene with known roles in regulating floral organ identity and flowering time, was primarily responsible for late flowering in LFP. This deletion disrupts an miR172 binding site, resulting in a gain-of-function mutation in euAP2a. Transcriptomic analyses revealed that at different stages of floral development, two chilling-responsive modules and four warm-responsive modules, comprising approximately 600 genes, were sequentially activated, forming a unique transcription programming. Furthermore, we found that euAP2a was transiently downregulated during the activation of these thermal-responsive modules at various stages. However, the loss of such transient, stage-specific downregulation of euAP2a caused by the deletion of miR172 binding sites resulted in the deactivation or delay of these modules in the LFP flower buds, suggesting that euAP2a acts as a transcription repressor to control floral developmental pace in peaches by modulating the thermo-responsive transcription programming. The findings shed light on the mechanisms behind late flowering in deciduous fruit trees, which is instrumental for breeding frost-tolerant cultivars.

2.
Plant Dis ; : PDIS09231910SC, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38372721

ABSTRACT

Although it is currently eradicated from the United States, Plum pox virus (PPV) poses an ongoing threat to U.S. stone fruit production. Although almond (Prunus dulcis) is known to be largely resistant to PPV, there is conflicting evidence about its potential to serve as an asymptomatic reservoir host for the virus and thus serve as a potential route of entry. Here, we demonstrate that both Tuono and Texas Mission cultivars can be infected by the U.S. isolate PPV Dideron (D) Penn4 and that Tuono is a transmission-competent host, capable of serving as a source of inoculum for aphid transmission of the virus. These findings have important implications for efforts to keep PPV out of the United States and highlight the need for additional research to test the susceptibility of almond to other PPV-D isolates.

3.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38287925

ABSTRACT

IGT/LAZY proteins play a central role in determining gravitropic set point angle and orientation of lateral organs across plant species. Recent work in model systems has demonstrated that interactions between IGT/LAZY proteins and BREVIS RADIX (BRX)-domain containing proteins, such as PH, RCC1, AND FYVE/RCC1-LIKE DOMAIN (PRAF/RLD), and BREVIS RADIX LIKE (BRXL) family members, are mechanistically important for setting gravitropic set point angle. Here, we identified peach PRAF/RLD proteins as interactors of the peach IGT/LAZY proteins PpeLAZY1 and DEEPER ROOTING 1 (PpeDRO1) from a yeast-two-hybrid screen. We also show that the BRX domains of these interacting proteins have high sequence similarity with PRAF/RLD and BRX family proteins from rice and Arabidopsis. Further, PpeLAZY1 and the peach PRAF/RLD interactors are all expressed at relatively high levels in leaf, meristem, and shoot tip tissues. Together, this evidence supports the importance and conservation of IGT/LAZY-BRX-domain interactions, which underlie setting gravitropic set point angle across angiosperms.

5.
Environ Microbiol ; 23(10): 6038-6055, 2021 10.
Article in English | MEDLINE | ID: mdl-33734550

ABSTRACT

We present the first worldwide study on the apple (Malus × domestica) fruit microbiome that examines questions regarding the composition and the assembly of microbial communities on and in apple fruit. Results revealed that the composition and structure of the fungal and bacterial communities associated with apple fruit vary and are highly dependent on geographical location. The study also confirmed that the spatial variation in the fungal and bacterial composition of different fruit tissues exists at a global level. Fungal diversity varied significantly in fruit harvested in different geographical locations and suggests a potential link between location and the type and rate of postharvest diseases that develop in each country. The global core microbiome of apple fruit was represented by several beneficial microbial taxa and accounted for a large fraction of the fruit microbial community. The study provides foundational information about the apple fruit microbiome that can be utilized for the development of novel approaches for the management of fruit quality and safety, as well as for reducing losses due to the establishment and proliferation of postharvest pathogens. It also lays the groundwork for studying the complex microbial interactions that occur on apple fruit surfaces.


Subject(s)
Malus , Microbiota , Bacteria/genetics , Fruit/microbiology , Fungi/genetics , Malus/microbiology
6.
Int J Mol Sci ; 21(24)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327659

ABSTRACT

Malus sieversii is considered the progenitor of modern apple (Malus pumila) cultivars and to represent a valuable source of genetic diversity. Despite the importance of M. sieversii as a source of disease resistance, stress tolerance, and novel fruit traits, little is known about gene function and diversity in M. sieversii. Notably, a publicly annotated genome sequence for this species is not available. In the current study, the FOX (Full-length cDNA OvereXpressing) gene hunting system was used to construct a library of transgenic lines of Arabidopsis in which each transgenic line overexpresses a full-length gene obtained from a cDNA library of the PI619283 accession of M. sieversii. The cDNA library was constructed from mRNA obtained from bark tissues collected in late fall-early winter, a time at which many abiotic stress-adaptative genes are expressed. Over 4000 apple FOX Arabidopsis lines have been established from the pool of transgenic seeds and cDNA inserts corresponding to various Gene Ontology (GO) categories have been identified. A total of 160 inserts appear to be novel, with no or limited homology to M. pumila, Arabidopsis, or poplar. Over 1300 lines have also been screened for freezing resistance. The constructed library of transgenic lines provides a valuable genetic resource for exploring gene function and diversity in Malus sieversii. Notably, no such library of t-DNA lines currently exists for any Malus species.


Subject(s)
Malus/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Malus/genetics , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Microorganisms ; 8(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585961

ABSTRACT

There is growing recognition of the role that the microbiome plays in the health and physiology of many plant species. However, considerably less research has been conducted on the postharvest microbiome of produce and the impact that postharvest processing may have on its composition. Here, amplicon sequencing was used to study the effect of washing, waxing, and low-temperature storage at 2 °C for six months on the bacterial and fungal communities of apple calyx-end, stem-end, and peel tissues. The results of the present work reveal that tissue-type is the main factor defining fungal and bacterial diversity and community composition on apple fruit. Both postharvest treatments and low temperature storage had a strong impact on the fungal and bacterial diversity and community composition of these tissue types. Distinct spatial and temporal changes in the composition and diversity of the microbiota were observed in response to various postharvest management practices. The greatest impact was attributed to sanitation practices with major differences among unwashed, washed and washed-waxed apples. The magnitude of the differences, however, was tissue-specific, with the greatest impact occurring on peel tissues. Temporally, the largest shift occurred during the first two months of low-temperature storage, although fungi were more affected by storage time than bacteria. In general, fungi and bacteria were impacted equally by sanitation practices, especially the epiphytic microflora of peel tissues. This research provides a foundation for understanding the impact of postharvest management practices on the microbiome of apple and its potential subsequent effects on postharvest disease management and food safety.

8.
Microbiome ; 6(1): 18, 2018 01 27.
Article in English | MEDLINE | ID: mdl-29374490

ABSTRACT

BACKGROUND: High-throughput amplicon sequencing spanning conserved portions of microbial genomes (16s rRNA and ITS) was used in the present study to describe the endophytic microbiota associated with three apple varieties, "Royal Gala," "Golden Delicious," and "Honey Crisp," and two rootstocks, M.9 and M.M.111. The objectives were to (1) determine if the microbiota differs in different rootstocks and apple varieties and (2) determine if specific rootstock-scion combinations influence the microbiota composition of either component. RESULTS: Results indicated that Ascomycota (47.8%), Zygomycota (31.1%), and Basidiomycota (11.6%) were the dominant fungal phyla across all samples. The majority of bacterial sequences were assigned to Proteobacteria (58.4%), Firmicutes (23.8%), Actinobacteria (7.7%), Bacteroidetes (2%), and Fusobacteria (0.4%). Rootstocks appeared to influence the microbiota of associated grafted scion, but the effect was not statistically significant. Pedigree also had an impact on the composition of the endophytic microbiota, where closely-related cultivars had a microbial community that was more similar to each other than it was to a scion cultivar that was more distantly-related by pedigree. The more vigorous rootstock (M.M.111) was observed to possess a greater number of growth-promoting bacterial taxa, relative to the dwarfing rootstock (M.9). CONCLUSIONS: The mechanism by which an apple genotype, either rootstock or scion, has a determinant effect on the composition of a microbial community is not known. The similarity of the microbiota in samples with a similar pedigree suggests the possibility of some level of co-evolution or selection as proposed by the "holobiont" concept in which metaorganisms have co-evolved. Clearly, however, the present information is only suggestive, and a more comprehensive analysis is needed.


Subject(s)
Bacteria/classification , Fungi/classification , High-Throughput Nucleotide Sequencing/methods , Malus/genetics , RNA, Ribosomal, 16S/genetics , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/isolation & purification , Endophytes , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Fungi/genetics , Fungi/isolation & purification , Fusobacteria/classification , Fusobacteria/genetics , Fusobacteria/isolation & purification , Genotype , Malus/microbiology , Microbiota , Phylogeny , Plant Roots/microbiology , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification
9.
Front Plant Sci ; 8: 1981, 2017.
Article in English | MEDLINE | ID: mdl-29201037

ABSTRACT

Malus sieversii from Central Asia is a progenitor of the modern domesticated apple (Malus × domestica). Several accessions of M. sieversii are highly resistant to the postharvest pathogen Penicillium expansum. A previous study identified the qM-Pe3.1 QTL on LG3 for resistance to P. expansum in the mapping population GMAL4593, developed using the resistant accession, M. sieversii -PI613981, and the susceptible cultivar "Royal Gala" (RG) (M. domestica), as parents. The goal of the present study was to characterize the transcriptomic response of susceptible RG and resistant PI613981 apple fruit to wounding and inoculation with P. expansum using RNA-Seq. Transcriptomic analyses 0-48 h post inoculation suggest a higher basal level of resistance and a more rapid and intense defense response to wounding and wounding plus inoculation with P. expansum in M. sieversii -PI613981 than in RG. Functional analysis showed that ethylene-related genes and genes involved in "jasmonate" and "MYB-domain transcription factor family" were over-represented in the resistant genotype. It is suggested that the more rapid response in the resistant genotype (Malus sieversii-PI613981) plays a major role in the resistance response. At least twenty DEGs were mapped to the qM-Pe3.1 QTL (M × d v.1: 26,848,396-28,424,055) on LG3, and represent potential candidate genes responsible for the observed resistance QTL in M. sieversii-PI613981. RT-qPCR of several of these genes was used to validate the RNA-Seq data and to confirm their higher expression in MS0.

10.
PLoS One ; 12(3): e0172949, 2017.
Article in English | MEDLINE | ID: mdl-28257442

ABSTRACT

Blue mold caused by Penicillium expansum is the most important postharvest disease of apple worldwide and results in significant financial losses. There are no defined sources of resistance to blue mold in domesticated apple. However, resistance has been described in wild Malus sieversii accessions, including plant introduction (PI)613981. The objective of the present study was to identify the genetic loci controlling resistance to blue mold in this accession. We describe the first quantitative trait loci (QTL) reported in the Rosaceae tribe Maleae conditioning resistance to P. expansum on genetic linkage group 3 (qM-Pe3.1) and linkage group 10 (qM-Pe10.1). These loci were identified in a M.× domestica 'Royal Gala' X M. sieversii PI613981 family (GMAL4593) based on blue mold lesion diameter seven days post-inoculation in mature, wounded apple fruit inoculated with P. expansum. Phenotypic analyses were conducted in 169 progeny over a four year period. PI613981 was the source of the resistance allele for qM-Pe3.1, a QTL with a major effect on blue mold resistance, accounting for 27.5% of the experimental variability. The QTL mapped from 67.3 to 74 cM on linkage group 3 of the GMAL4593 genetic linkage map. qM-Pe10.1 mapped from 73.6 to 81.8 cM on linkage group 10. It had less of an effect on resistance, accounting for 14% of the experimental variation. 'Royal Gala' was the primary contributor to the resistance effect of this QTL. However, resistance-associated alleles in both parents appeared to contribute to the least square mean blue mold lesion diameter in an additive manner at qM-Pe10.1. A GMAL4593 genetic linkage map composed of simple sequence repeats and 'Golden Delicious' single nucleotide polymorphism markers was able to detect qM-Pe10.1, but failed to detect qM-Pe3.1. The subsequent addition of genotyping-by-sequencing markers to the linkage map provided better coverage of the PI613981 genome on linkage group 3 and facilitated discovery of qM-Pe3.1. A DNA test for qM-Pe3.1 has been developed and is currently being evaluated for its ability to predict blue mold resistance in progeny segregating for qM-Pe3.1. Due to the long juvenility of apple, the availability of a DNA test to screen for the presence of qM-Pe3.1 at the seedling stage will greatly improve efficiency of breeding apple for blue mold resistance.


Subject(s)
Disease Resistance/genetics , Genome, Plant , Genotype , Malus/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Chromosome Mapping , Fruit/genetics , Fruit/immunology , Fruit/microbiology , Genetic Linkage , Genetic Markers , High-Throughput Nucleotide Sequencing , Malus/immunology , Malus/microbiology , Microsatellite Repeats , Penicillium/pathogenicity , Penicillium/physiology , Phenotype , Plant Diseases/immunology , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...