Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chem Sci ; 14(42): 11749-11760, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37920359

ABSTRACT

Photodynamic therapy (PDT) is a medical technique for the treatment of cancer. It is based on the use of non-toxic molecules, called photosensitizers (PSs), that become toxic when irradiated with light and produce reactive oxygen specious (ROS) such as singlet oxygen (1O2). This light-induced toxicity is rather selective since the physician only targets a specific area of the body, leading to minimal side effects. Yet, a strategy to improve further the selectivity of this medical technique is to confine the delivery of the PS to cancer cells only instead of spreading it randomly throughout the body prior to light irradiation. To address this problem, we present here novel sulfonamide-based monopodal and dipodal ruthenium and osmium polypyridyl complexes capable of targeting carbonic anhydrases (CAs) that are a major target in cancer therapy. CAs are overexpressed in the membrane or cytoplasm of various cancer cells. We therefore anticipated that the accumulation of our complexes in or outside the cell prior to irradiation would improve the selectivity of the PDT treatment. We show that our complexes have a high affinity for CAs, accumulate in cancer cells overexpressing CA cells and importantly kill cancer cells under both normoxic and hypoxic conditions upon irradiation at 540 nm. More importantly, Os(ii) compounds still exhibit some phototoxicity under 740 nm irradiation under normoxic conditions. To our knowledge, this is the first description of ruthenium/osmium-based PDT PSs that are CA inhibitors for the selective treatment of cancers.

2.
Biomacromolecules ; 24(12): 5940-5950, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38033171

ABSTRACT

Polymer micelles/vesicles made of a red-light-responsive Ru(II)-containing block copolymer (PolyRu) are elaborated as a model system for anticancer phototherapy. PolyRu is composed of PEG and a hydrophobic polypeptoid bearing thioether side chains, 40% of which are coordinated with [Ru(2,2':6',2″-terpyridine)(2,2'-biquinoline)](PF6)2 via the Ru-S bond, resulting in a 67 wt % Ru complex loading capacity. Red-light illumination induces the photocleavage of the Ru-S bond and produces [Ru(2,2':6',2″-terpyridine)(2,2'-biquinoline)(H2O)](PF6)2. Meanwhile, ROS are generated under the photosensitization of the Ru complex and oxidize hydrophobic thioether to hydrophilic sulfoxide, causing the disruption of micelles/vesicles. During the disruption, ROS generation and Ru complex release are synergistically enhanced. PolyRu micelles/vesicles are taken up by cancer cells while they exhibit very low cytotoxicity in the dark. In contrast, they show much higher cytotoxicity under red-light irradiation. PolyRu micelles/vesicles are promising nanoassembly prototypes that protect metallodrugs in the dark but exhibit light-activated anticancer effects with spatiotemporal control for photoactivated chemotherapy and photodynamic therapy.


Subject(s)
Coordination Complexes , Ruthenium , Reactive Oxygen Species , Ruthenium/pharmacology , Ruthenium/chemistry , Drug Liberation , Micelles , Phototherapy/methods , Polymers/chemistry , Sulfides , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
3.
Inorg Chem ; 62(45): 18510-18523, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37913550

ABSTRACT

Lack of selectivity is one of the main issues with currently used chemotherapies, causing damage not only to altered cells but also to healthy cells. Over the last decades, photodynamic therapy (PDT) has increased as a promising therapeutic tool due to its potential to treat diseases like cancer or bacterial infections with a high spatiotemporal control. Ruthenium(II) polypyridyl compounds are gaining attention for their application as photosensitizers (PSs) since they are generally nontoxic in dark conditions, while they show remarkable toxicity after light irradiation. In this work, four Ru(II) polypyridyl compounds with sterically expansive ligands were studied as PDT agents. The Ru(II) complexes were synthesized using an alternative route to those described in the literature, which resulted in an improvement of the synthesis yields. Solid-state structures of compounds [Ru(DIP)2phen]Cl2 and [Ru(dppz)2phen](PF6)2 have also been obtained. It is well-known that compound [Ru(dppz)(phen)2]Cl2 binds to DNA by intercalation. Therefore, we used [Ru(dppz)2phen]Cl2 as a model for DNA interaction studies, showing that it stabilized two different sequences of duplex DNA. Most of the synthesized Ru(II) derivatives showed very promising singlet oxygen quantum yields, together with noteworthy photocytotoxic properties against two different cancer cell lines, with IC50 in the micro- or even nanomolar range (0.06-7 µM). Confocal microscopy studies showed that [Ru(DIP)2phen]Cl2 and [Ru(DIP)2TAP]Cl2 accumulate preferentially in mitochondria, while no mitochondrial internalization was observed for the other compounds. Although [Ru(dppn)2phen](PF6)2 did not accumulate in mitochondria, it interestingly triggered an impairment in mitochondrial respiration after light irradiation. Among others, [Ru(dppn)2phen](PF6)2 stands out for its very good IC50 values, correlated with a very high singlet oxygen quantum yield and mitochondrial respiration disruption.


Subject(s)
Coordination Complexes , Photochemotherapy , Ruthenium , Coordination Complexes/chemistry , Ruthenium/pharmacology , Ruthenium/chemistry , Singlet Oxygen/metabolism , DNA , Ligands
4.
Chemistry ; 29(61): e202301742, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37548580

ABSTRACT

Light-activated treatments, such as photodynamic therapy (PDT), provide temporal and spatial control over a specific cytotoxic response by exploiting toxicity differences between irradiated and dark conditions. In this work, a novel strategy for developing near infrared (NIR)-activatable Ru(II) polypyridyl-based photosensitizers (PSs) was successfully developed through the incorporation of symmetric heptamethine cyanine dyes in the metal complex via a phenanthrimidazole ligand. Owing to their strong absorption in the NIR region, the PSs could be efficiently photoactivated with highly penetrating NIR light (770 nm), leading to high photocytotoxicities towards several cancer cell lines under both normoxic and hypoxic conditions. Notably, our lead PS (Ru-Cyn-1), which accumulated in the mitochondria, exhibited a good photocytotoxic activity under challenging low-oxygen concentration (2 % O2 ) upon NIR light irradiation conditions (770 nm), owing to a combination of type I and II PDT mechanisms. The fact that the PS Protoporphyrin IX (PpIX), the metabolite of the clinically approved 5-ALA PS, was found inactive under the same challenging conditions positions Ru-Cyn-1 complex as a promising PDT agent for the treatment of deep-seated hypoxic tumours.


Subject(s)
Coordination Complexes , Neoplasms , Photochemotherapy , Ruthenium , Humans , Photosensitizing Agents/pharmacology , Coordination Complexes/pharmacology , Coloring Agents , Neoplasms/drug therapy , Ruthenium/pharmacology
5.
Angew Chem Int Ed Engl ; 62(20): e202218347, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36917074

ABSTRACT

Five osmium(II) polypyridyl complexes of the general formula [Os(4,7-diphenyl-1,10-phenanthroline)2 L]2+ were synthesized as photosensitizers for photodynamic therapy by varying the nature of the ligand L. Thanks to the pronounced π-extended structure of the ligands and the heavy atom effect provided by the osmium center, these complexes exhibit a high absorption in the near-infrared (NIR) region (up to 740 nm), unlike related ruthenium complexes. This led to a promising phototoxicity in vitro against cancer cells cultured as 2D cell layers but also in multicellular tumor spheroids upon irradiation at 740 nm. The complex [Os(4,7-diphenyl-1,10-phenanthroline)2 (2,2'-bipyridine)]2+ was found to be the most efficient against various cancer cell lines, with high phototoxicity indexes. Experiments on CT26 tumor-bearing BALB/c mice also indicate that the OsII complexes could significantly reduce tumor growth following 740 nm laser irradiation. The high phototoxicity in the biological window of this structurally simple complex makes it a promising photosensitizer for cancer treatment.


Subject(s)
Coordination Complexes , Neoplasms , Photochemotherapy , Ruthenium , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Osmium/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Coordination Complexes/chemistry , Neoplasms/drug therapy , Ruthenium/pharmacology , Ruthenium/chemistry
6.
Environ Monit Assess ; 195(3): 422, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36811658

ABSTRACT

Coastal ecosystems are the most vulnerable to natural and anthropogenic pressures which should be assessed using various chemical and ecological indicators. Our study aims to provide practical monitoring of anthropogenic pressures related to metal discharges in coastal waters for identifying potential ecological deterioration. The spatial variability of various chemical elements concentrations and their main sources were determined in the surficial sediments of a Mediterranean coastal area submitted to high anthropogenic pressure, the semi-enclosed Boughrara Lagoon located in southeastern Tunisia, by conducting several geochemical and multi-elemental analyses. The grain size and the geochemical analyses both suggested a marine influence of the sediment inputs in the north of the area (near Ajim channel), whereas continental and aeolian features dominated the sedimentary inputs in the southwestern lagoon. This last area was also characterized by the highest concentrations of metals, in particular Pb (4.45-173.33 ppm), Mn (68.45-1469.27 ppm), Cu (7.64-134.26 ppm), Zn (28.74-244.79 ppm), Cd (0.11-2.23 ppm), Fe (0.5-4.9%), and Al (0.7-3.2%). By referring to background crustal values and the contamination factor calculations (CF), the lagoon is considered as highly polluted for Cd, Pb, and Fe (3 < CF < 6). Three possible sources of pollution were identified: phosphogypsum effluents (P, Al, Cu, and Cd), the ex-Pb mine (Pb and Zn), and the cliff weathering and streams input from the red clay quarry (Fe). Furthermore, pyrite precipitation was identified for the first time in the Boughrara lagoon, suggesting the occurrence of anoxic conditions in this lagoon.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Geologic Sediments/chemistry , Tunisia , Cadmium/analysis , Ecosystem , Lead/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Risk Assessment
7.
Chem Sci ; 14(2): 362-371, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36687351

ABSTRACT

The in vitro to in vivo translation of metal-based cytotoxic drugs has proven to be a significant hurdle in their establishment as effective anti-cancer alternatives. Various nano-delivery systems, such as polymeric nanoparticles, have been explored to address the pharmacokinetic limitations associated with the use of these complexes. However, these systems often suffer from poor stability or involve complex synthetic procedures. To circumvent these problems, we report here a simple, one-pot procedure for the preparation of covalently-attached Ru-polylactide nanoparticles. This methodology relies on the ring-opening polymerization of lactide initiated by a calcium alkoxide derivative formed from calcium bis(trimethylsilyl amide) and a hydroxyl-bearing ruthenium complex. This procedure proceeds with high efficiency (near-quantitative incorporation of Ru in the polymer) and enables the preparation of polymers with varying molecular weights (2000-11000 Da) and high drug loadings (up to 68% w/w). These polymers were formulated as narrowly dispersed nanoparticles (110 nm) that exhibited a slow and predictable release of the ruthenium payload. Unlike standard encapsulation methods routinely used, the release kinetics of these nanoparticles is controlled and may be adjusted on demand, by tuning the size of the polymer chain. In terms of cytotoxicity, the nanoparticles were assessed in the ovarian cancer cell line A2780 and displayed potency comparable to cisplatin and the free drug, in the low micromolar range. Interestingly, the activity was maintained when tested in a cisplatin-resistant cell line, suggesting a possible orthogonal mechanism of action. Additionally, the internalization in tumour cells was found to be significantly higher than the free ruthenium complex (>200 times in some cases), clearly showcasing the added benefit in the drug's cellular permeation and accumulation of the drug. Finally, the in vivo performance was evaluated for the first time in mice. The experiments showed that the intravenously injected nanoparticles were well tolerated and were able to significantly improve the pharmacokinetics and biodistribution of the parent drug. Not only was the nanosystem able to promote an 18-fold increase in tumour accumulation, but it also allowed a considerable reduction of drug accumulation in vital organs, achieving, for example, reduction levels of 90% and 97% in the brain and lungs respectively. In summary, this simple and efficient one-pot procedure enables the generation of stable and predictable nanoparticles capable of improving the cellular penetration and systemic accumulation of the Ru drug in the tumour. Altogether, these results showcase the potential of covalently-loaded ruthenium polylactide nanoparticles and pave the way for its exploitation and application as a viable tool in the treatment of ovarian cancer.

8.
Nanoscale ; 14(42): 15760-15771, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36239706

ABSTRACT

Persistent luminescence nanoparticles (PLNPs) are attracting growing interest for non-invasive optical imaging of tissues with a high signal to noise ratio. PLNPs can emit a persistent luminescence signal through the tissue transparency window for several minutes, after UV light excitation before systemic administration or directly in vivo through visible irradiation, allowing us to get rid of the autofluorescence signal of tissues. PLNPs constitute a promising alternative to the commercially available optical near infrared probes thanks to their versatile functionalization capabilities for improvement of the circulation time in the blood stream. Nevertheless, while biodistribution for a short time is well known, the long-term fate and toxicity of the PLNP's inorganic core after injection have not been dealt with in depth. Here we extend the current knowledge on ZnGa1.995O4Cr0.005 NPs (or ZGO) with a one-year follow-up of their fate after a single systemic administration in mice. We investigated the organ tissue uptake of ZGO with two different coatings and determined their intracellular processing up to one year after injection. The biopersistence of ZGO was assessed, with a long-term retention, quantified by ICP-MS, mostly in the liver and spleen, parallel with a loss of their luminescence properties. The analysis of the toxicity related to combining an animal's weight, key hematological and metabolic markers, histological observations of liver tissues and quantification of the expression of 31 genes linked to different metabolic reactions did not reveal any signs of noxiousness, from the macro scale to the molecular level. Therefore, the ZGO imaging probe has been proven to be a safe and relevant candidate for preclinical studies, allowing its long term use without any in vivo disturbance of the general metabolism.


Subject(s)
Luminescence , Nanoparticles , Mice , Animals , Tissue Distribution , Follow-Up Studies , Nanoparticles/toxicity , Optical Imaging
9.
Chembiochem ; 23(19): e202200398, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35924883

ABSTRACT

Cancer is one of the main causes of death worldwide. Platinum complexes (i. e., cisplatin, carboplatin, and others) are currently heavily used for the treatment of different types of cancer, but unwanted effects occur. Ruthenium complexes have been shown to be potential promising alternatives to these metal-based drugs. In this work, we performed a structure-activity relationship (SAR) study on two small series of Ru(II) polypyridyl complexes of the type [Ru(L1)2 (O^O)]Cln (3-8), where L1 is 4,7-diphenyl-1,10-phenantroline (DIP) or 1,10-phenantroline (phen), and O^O is a symmetrical anionic dioxo ligand: oxalate (ox, n=0), malonate (mal, n=0), or acetylacetonate (acac, n=1). These two self-consistent series of compounds allowed us to perform a systematic investigation for establishing how the nature of the ligands and the charge affect the anticancer properties of the complexes. Cytotoxicity tests on different cell lines demonstrated that some of the six compounds 3-8 have a promising anticancer activity. More specifically, the cationic complex [Ru(DIP)2 (η2 -acac)]Cl (4) has IC50 values in the mid-nanomolar concentration range, lower than those of cisplatin on the same cell lines. Interestingly, [Ru(DIP)2 (η2 -acac)]Cl was found to localize mainly in the mitochondria, whereas a smaller fraction was detected in the nucleus. Overall, our SAR investigation demonstrates the importance of combining the positive charge of the complex with the highly lipophilic diimine ligand DIP.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Ruthenium , Antineoplastic Agents/pharmacology , Carboplatin , Cisplatin/pharmacology , Coordination Complexes/pharmacology , Humans , Ligands , Malonates , Oxalates , Platinum , Ruthenium/pharmacology , Structure-Activity Relationship
10.
Inorg Chem ; 61(34): 13576-13585, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-35960605

ABSTRACT

Four new ruthenium(II) polypyridyl complexes were synthesized to study the effect of poly(ethylene glycol) and/or biotin conjugation on their physical and biological properties, including their hydrophilicity, their cellular uptake, and their phototoxicity. Unexpectedly, these complexes self-assembled into nanoparticles upon dilution in biological media. This behavior leads to their accumulation in lysosomes following their internalization by cells. While a significant increase in cellular uptake was observed for the biotin-conjugated complexes, it did not result in an increase in their phototoxicity. However, their high phototoxicity upon irradiation at long wavelengths (645-670 nm) and their self-assembling behavior make them a promising backbone for the development of new lysosome-targeted photosensitizers for photodynamic therapy.


Subject(s)
Coordination Complexes , Nanoparticles , Photochemotherapy , Ruthenium , Biotin , Photosensitizing Agents
11.
Nanoscale ; 14(4): 1386-1394, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35018394

ABSTRACT

Optical in vivo imaging has become a widely used technique and is still under development for clinical diagnostics and treatment applications. For further development of the field, researchers have put much effort into the development of inorganic nanoparticles (NPs) as imaging probes. In this trend, our laboratory developed ZnGa1.995O4Cr0.005 (ZGO) nanoparticles, which can emit a bright persistent luminescence signal through the tissue transparency window for dozens of minutes and can be activated in vivo with visible irradiation. These properties endow them with unique features, allowing us to recover information over a long-time study with in vivo imaging without any background. To target tissues of interest, ZGO must circulate long enough in the blood stream, a phenomenon which is limited by the mononuclear phagocyte system (MPS). Depending on their size, charge and coating, the NPs are sooner or later opsonized and stored into the main organs of the MPS (liver, spleen, and lungs). The NPs therefore have to be coated with a hydrophilic polymer to avoid this limitation. To this end, a new functionalization method using two different polyethylene glycol phosphonic acid polymers (a linear one, later named lpPEG and a branched one, later named pPEG) has been studied in this article. The coating has been optimized and characterized in various aqueous media. The behaviour of the newly functionalized NPs has been investigated in the presence of plasmatic proteins, and an in vivo biodistribution study has been performed. Among them ZGOpPEG exhibits a long circulation time, corresponding to low protein adsorption, while presenting an effective one-step process in aqueous medium with a low hydrodynamic diameter increase. This new method is much more advantageous than another strategy we reported previously that used a two-step PEG silane coating performed in an organic solvent (dimethylformamide) for which the final hydrodynamic diameter was twice the initial diameter.


Subject(s)
Luminescence , Nanoparticles , Phosphorous Acids , Polyethylene Glycols , Polymers , Tissue Distribution
12.
Metallomics ; 12(10): 1585-1598, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33084720

ABSTRACT

Biometals play a critical role in both the healthy and diseased brain's functioning. They accumulate in the normal aging brain, and are inherent to neurodegenerative disorders and their associated pathologies. A prominent example of this is the brain accumulation of metals such as Ca, Fe and Cu (and more ambiguously, Zn) associated with Alzheimer's disease (AD). The natural stable isotope compositions of such metals have also shown utility in constraining biological mechanisms, and in differentiating between healthy and diseased states, sometimes prior to conventional methods. Here we have detailed the distribution of the biologically relevant elements Mg, P, K, Ca, Fe, Cu and Zn in brain regions of Göttingen minipigs ranging in age from three months to nearly six years, including control animals and both a single- and double-transgenic model of AD (PS1, APP/PS1). Moreover, we have characterized the Ca isotope composition of the brain for the first time. Concentration data track rises in brain biometals with age, namely for Fe and Cu, as observed in the normal ageing brain and in AD, and biometal data point to increased soluble amyloid beta (Aß) load prior to AD plaque identification via brain imaging. Calcium isotope results define the brain as the isotopically lightest permanent reservoir in the body, indicating that brain Ca dyshomeostasis may induce measurable isotopic disturbances in accessible downstream reservoirs such as biofluids.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Calcium/metabolism , Metals/metabolism , Aging , Alzheimer Disease/pathology , Animals , Brain/pathology , Disease Models, Animal , Iron/metabolism , Isotopes/metabolism , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL
...