Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Mol Microbiol ; 121(3): 431-452, 2024 03.
Article in English | MEDLINE | ID: mdl-37492994

ABSTRACT

Transmission of malaria parasites to the mosquito is mediated by sexual precursor cells, the gametocytes. Upon entering the mosquito midgut, the gametocytes egress from the enveloping erythrocyte while passing through gametogenesis. Egress follows an inside-out mode during which the membrane of the parasitophorous vacuole (PV) ruptures prior to the erythrocyte membrane. Membrane rupture requires exocytosis of specialized egress vesicles of the parasites; that is, osmiophilic bodies (OBs) involved in rupturing the PV membrane, and vesicles that harbor the perforin-like protein PPLP2 (here termed P-EVs) required for erythrocyte lysis. While some OB proteins have been identified, like G377 and MDV1/Peg3, the majority of egress vesicle-resident proteins is yet unknown. Here, we used high-resolution imaging and BioID methods to study the two egress vesicle types in Plasmodium falciparum gametocytes. We show that OB exocytosis precedes discharge of the P-EVs and that exocytosis of the P-EVs, but not of the OBs, is calcium sensitive. Both vesicle types exhibit distinct proteomes with the majority of proteins located in the OBs. In addition to known egress-related proteins, we identified novel components of OBs and P-EVs, including vesicle-trafficking proteins. Our data provide insight into the immense molecular machinery required for the inside-out egress of P. falciparum gametocytes.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Animals , Plasmodium falciparum/metabolism , Proteomics/methods , Protozoan Proteins/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/parasitology
2.
Mol Microbiol ; 121(3): 328-340, 2024 03.
Article in English | MEDLINE | ID: mdl-37602900

ABSTRACT

An essential step in the life cycle of malaria parasites is their egress from hepatocytes, which enables the transition from the asymptomatic liver stage to the pathogenic blood stage of infection. To exit the liver, Plasmodium parasites first disrupt the parasitophorous vacuole membrane that surrounds them during their intracellular replication. Subsequently, parasite-filled structures called merosomes emerge from the infected cell. Shrouded by host plasma membrane, like in a Trojan horse, parasites enter the vasculature undetected by the host immune system and travel to the lung where merosomes rupture, parasites are released, and the blood infection stage begins. This complex, multi-step process must be carefully orchestrated by the parasite and requires extensive manipulation of the infected host cell. This review aims to outline the known signaling pathways that trigger exit, highlight Plasmodium proteins that contribute to the release of liver-stage merozoites, and summarize the accompanying changes to the hepatic host cell.


Subject(s)
Malaria , Parasites , Plasmodium , Animals , Humans , Parasites/metabolism , Liver/parasitology , Hepatocytes/parasitology , Plasmodium/metabolism , Malaria/parasitology , Erythrocytes/parasitology , Protozoan Proteins/metabolism
3.
Mol Microbiol ; 121(3): 529-542, 2024 03.
Article in English | MEDLINE | ID: mdl-38131156

ABSTRACT

An essential process in transmission of the malaria parasite to the Anopheles vector is the conversion of mature gametocytes into gametes within the mosquito gut, where they egress from the red blood cell (RBC). During egress, male gametocytes undergo exflagellation, leading to the formation of eight haploid motile microgametes, while female gametes retain their spherical shape. Gametocyte egress depends on sequential disruption of the parasitophorous vacuole membrane and the host cell membrane. In other life cycle stages of the malaria parasite, phospholipases have been implicated in membrane disruption processes during egress, however their importance for gametocyte egress is relatively unknown. Here, we performed comprehensive functional analyses of six putative phospholipases for their role during development and egress of Plasmodium falciparum gametocytes. We localize two of them, the prodrug activation and resistance esterase (PF3D7_0709700) and the lysophospholipase 1 (PF3D7_1476700), to the parasite plasma membrane. Subsequently, we show that disruption of most of the studied phospholipase genes does neither affect gametocyte development nor egress. The exception is the putative patatin-like phospholipase 3 (PF3D7_0924000), whose gene deletion leads to a delay in male gametocyte exflagellation, indicating an important, albeit not essential, role of this enzyme in male gametogenesis.


Subject(s)
Malaria , Plasmodium falciparum , Animals , Male , Female , Phospholipases/genetics , Mosquito Vectors , Erythrocytes/parasitology
4.
mBio ; : e0171823, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37882543

ABSTRACT

Plasmodium parasites rely on a functional electron transport chain (ETC) within their mitochondrion for proliferation, and compounds targeting mitochondrial functions are validated antimalarials. Here, we localize Plasmodium falciparum patatin-like phospholipase 2 (PfPNPLA2, PF3D7_1358000) to the mitochondrion and reveal that disruption of the PfPNPLA2 gene impairs asexual replication. PfPNPLA2-null parasites are hypersensitive to proguanil and inhibitors of the mitochondrial ETC, including atovaquone. In addition, PfPNPLA2-deficient parasites show reduced mitochondrial respiration and reduced mitochondrial membrane potential, indicating that disruption of PfPNPLA2 leads to a defect in the parasite ETC. Lipidomic analysis of the mitochondrial phospholipid cardiolipin (CL) reveals that loss of PfPNPLA2 is associated with a moderate shift toward shorter-chained and more saturated CL species, implying a contribution of PfPNPLA2 to CL remodeling. PfPNPLA2-deficient parasites display profound defects in gametocytogenesis, underlining the importance of a functional mitochondrial ETC during both the asexual and sexual development of the parasite. IMPORTANCE For their proliferation within red blood cells, malaria parasites depend on a functional electron transport chain (ETC) within their mitochondrion, which is the target of several antimalarial drugs. Here, we have used gene disruption to identify a patatin-like phospholipase, PfPNPLA2, as important for parasite replication and mitochondrial function in Plasmodium falciparum. Parasites lacking PfPNPLA2 show defects in their ETC and become hypersensitive to mitochondrion-targeting drugs. Furthermore, PfPNPLA2-deficient parasites show differences in the composition of their cardiolipins, a unique class of phospholipids with key roles in mitochondrial functions. Finally, we demonstrate that parasites devoid of PfPNPLA2 have a defect in gametocyte maturation, underlining the importance of a functional ETC for parasite transmission to the mosquito vector.

5.
mBio ; 14(4): e0141323, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37489900

ABSTRACT

For its replication within red blood cells, the malaria parasite depends on a highly active and regulated lipid metabolism. Enzymes involved in lipid metabolic processes such as phospholipases are, therefore, potential drug targets. Here, using reverse genetics approaches, we show that only 1 out of the 19 putative phospholipases expressed in asexual blood stages of Plasmodium falciparum is essential for proliferation in vitro, pointing toward a high level of redundancy among members of this enzyme family. Using conditional mislocalization and gene disruption techniques, we show that this essential phosphoinositide-specific phospholipase C (PI-PLC, PF3D7_1013500) has a previously unrecognized essential role during intracellular parasite maturation, long before its previously perceived role in parasite egress and invasion. Subsequent lipidomic analysis suggests that PI-PLC mediates cleavage of phosphatidylinositol bisphosphate (PIP2) in schizont-stage parasites, underlining its critical role in regulating phosphoinositide levels in the parasite. IMPORTANCE The clinical symptoms of malaria arise due to repeated rounds of replication of Plasmodium parasites within red blood cells (RBCs). Central to this is an intense period of membrane biogenesis. Generation of membranes not only requires de novo synthesis and acquisition but also the degradation of phospholipids, a function that is performed by phospholipases. In this study, we investigate the essentiality of the 19 putative phospholipase enzymes that the human malaria parasite Plasmodium falciparum expresses during its replication within RBCs. We not only show that a high level of functional redundancy exists among these enzymes but, at the same time, also identify an essential role for the phosphoinositide-specific phospholipase C in parasite development and cleavage of the phospholipid phosphatidylinositol bisphosphate.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Animals , Humans , Plasmodium falciparum/metabolism , Parasites/metabolism , Phosphoinositide Phospholipase C/metabolism , Phospholipases/genetics , Phospholipases/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Malaria/metabolism , Phospholipids/metabolism , Phosphatidylinositols/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/parasitology
6.
PLoS Pathog ; 19(6): e1011449, 2023 06.
Article in English | MEDLINE | ID: mdl-37352369

ABSTRACT

Malaria parasite release (egress) from host red blood cells involves parasite-mediated membrane poration and rupture, thought to involve membrane-lytic effector molecules such as perforin-like proteins and/or phospholipases. With the aim of identifying these effectors, we disrupted the expression of two Plasmodium falciparum perforin-like proteins simultaneously and showed that they have no essential roles during blood stage egress. Proteomic profiling of parasite proteins discharged into the parasitophorous vacuole (PV) just prior to egress detected the presence in the PV of a lecithin:cholesterol acyltransferase (LCAT; PF3D7_0629300). Conditional ablation of LCAT resulted in abnormal egress and a reduced replication rate. Lipidomic profiles of LCAT-null parasites showed drastic changes in several phosphatidylserine and acylphosphatidylglycerol species during egress. We thus show that, in addition to its previously demonstrated role in liver stage merozoite egress, LCAT is required to facilitate efficient egress in asexual blood stage malaria parasites.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Animals , Parasites/metabolism , Phospholipases , Perforin , Proteomics , Erythrocytes/parasitology , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Malaria, Falciparum/parasitology
7.
Elife ; 112022 12 28.
Article in English | MEDLINE | ID: mdl-36576255

ABSTRACT

The malaria parasite Plasmodium falciparum synthesizes significant amounts of phospholipids to meet the demands of replication within red blood cells. De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway is essential, requiring choline that is primarily sourced from host serum lysophosphatidylcholine (lysoPC). LysoPC also acts as an environmental sensor to regulate parasite sexual differentiation. Despite these critical roles for host lysoPC, the enzyme(s) involved in its breakdown to free choline for PC synthesis are unknown. Here, we show that a parasite glycerophosphodiesterase (PfGDPD) is indispensable for blood stage parasite proliferation. Exogenous choline rescues growth of PfGDPD-null parasites, directly linking PfGDPD function to choline incorporation. Genetic ablation of PfGDPD reduces choline uptake from lysoPC, resulting in depletion of several PC species in the parasite, whilst purified PfGDPD releases choline from glycerophosphocholine in vitro. Our results identify PfGDPD as a choline-releasing glycerophosphodiesterase that mediates a critical step in PC biosynthesis and parasite survival.


Malaria kills over half a million people every year worldwide. A single-celled parasite called Plasmodium falciparum is responsible for the most lethal form of the disease. This malaria-causing agent is carried by mosquitos which transmit the parasite to humans through their bite. Once in the bloodstream, the parasite enters red blood cells and starts to replicate so it can go on to infect other cells. Like our cells, P. falciparum is surrounded by a membrane, and further membranes surround a number of its internal compartments. To make these protective coats, the parasite has to gather a nutrient called choline to form an important building block in the membrane. The parasite gets most of its choline by absorbing and digesting a molecule known as lysoPC found in the bloodstream of its host. However, it was unclear precisely how the parasite achieves this. To address this question, Ramaprasad, Burda et al. used genetic and metabolomic approaches to study how P. falciparum breaks down lysoPC. The experiments found that mutant parasites that are unable to make an enzyme called GDPD were able to infect red blood cells, but failed to grow properly once inside the cells. The mutant parasites took up less choline and, as a result, also made fewer membrane building blocks. The team were able to rescue the mutant parasites by supplying them with large quantities of choline, which allowed them to resume growing. Taken together, the findings of Ramaprasad, Burda et al. suggest that P. falciparum uses GDPD to extract choline from lysoPC when it is living in red blood cells. More and more P. falciparum parasites are becoming resistant to many of the drugs currently being used to treat malaria. One solution is to develop new therapies that target different molecules in the parasite. Since it performs such a vital role, GDPD may have the potential to be a future drug target.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Animals , Parasites/metabolism , Choline/metabolism , Plasmodium falciparum/genetics , Glycerylphosphorylcholine/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/parasitology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
8.
J Biol Chem ; 298(9): 102360, 2022 09.
Article in English | MEDLINE | ID: mdl-35961464

ABSTRACT

Malaria is responsible for hundreds of thousands of deaths every year. The lack of an effective vaccine and the global spread of multidrug resistant parasites hampers the fight against the disease and underlines the need for new antimalarial drugs. Central to the pathogenesis of malaria is the proliferation of Plasmodium parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor-ligand interactions between the parasite and the host cell. Posttranslational modifications such as protein phosphorylation are known to be key regulators in this process and are mediated by protein kinases. For several parasite kinases, including the Plasmodium falciparum glycogen synthase kinase 3 (PfGSK3), inhibitors have been shown to block erythrocyte invasion. Here, we provide an assessment of PfGSK3 function by reverse genetics. Using targeted gene disruption, we show the active gene copy, PfGSK3ß, is not essential for asexual blood stage proliferation, although it modulates efficient erythrocyte invasion. We found functional inactivation leads to a 69% decreased growth rate and confirmed this growth defect by rescue experiments with wildtype and catalytically inactive mutants. Functional knockout of PfGSK3ß does not lead to transcriptional upregulation of the second copy of PfGSK3. We further analyze expression, localization, and function of PfGSK3ß during gametocytogenesis using a parasite line allowing conditional induction of sexual commitment. We demonstrate PfGSK3ß-deficient gametocytes show a strikingly malformed morphology leading to the death of parasites in later stages of gametocyte development. Taken together, these findings are important for our understanding and the development of PfGSK3 as an antimalarial target.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/pharmacology , Erythrocytes/metabolism , Glycogen Synthase Kinase 3/genetics , Humans , Ligands , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
9.
Microorganisms ; 10(7)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35889137

ABSTRACT

S-adenosylmethionine synthetase (SAMS) is a key enzyme for the synthesis of the lone methyl donor S-adenosyl methionine (SAM), which is involved in transmethylation reactions and hence required for cellular processes such as DNA, RNA, and histone methylation, but also polyamine biosynthesis and proteostasis. In the human malaria parasite Plasmodium falciparum, PfSAMS is encoded by a single gene and has been suggested to be crucial for malaria pathogenesis and transmission; however, to date, PfSAMS has not been fully characterized. To gain deeper insight into the function of PfSAMS, we generated a conditional gene knockdown (KD) using the glmS ribozyme system. We show that PfSAMS localizes to the cytoplasm and the nucleus of blood-stage parasites. PfSAMS-KD results in reduced histone methylation and leads to impaired intraerythrocytic growth and gametocyte development. To further determine the interaction network of PfSAMS, we performed a proximity-dependent biotin identification analysis. We identified a complex network of 1114 proteins involved in biological processes such as cell cycle control and DNA replication, or transcription, but also in phosphatidylcholine and polyamine biosynthesis and proteasome regulation. Our findings highlight the diverse roles of PfSAMS during intraerythrocytic growth and sexual stage development and emphasize that PfSAMS is a potential drug target.

10.
mSphere ; 6(6): e0074321, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34756057

ABSTRACT

During the symptomatic human blood phase, malaria parasites replicate within red blood cells. Parasite proliferation relies on the uptake of nutrients, such as amino acids, from the host cell and blood plasma, requiring transport across multiple membranes. Amino acids are delivered to the parasite through the parasite-surrounding vacuolar compartment by specialized nutrient-permeable channels of the erythrocyte membrane and the parasitophorous vacuole membrane (PVM). However, further transport of amino acids across the parasite plasma membrane (PPM) is currently not well characterized. In this study, we focused on a family of Apicomplexan amino acid transporters (ApiATs) that comprises five members in Plasmodium falciparum. First, we localized four of the P. falciparum ApiATs (PfApiATs) at the PPM using endogenous green fluorescent protein (GFP) tagging. Next, we applied reverse genetic approaches to probe into their essentiality during asexual replication and gametocytogenesis. Upon inducible knockdown and targeted gene disruption, a reduced asexual parasite proliferation was detected for PfApiAT2 and PfApiAT4. Functional inactivation of individual PfApiATs targeted in this study had no effect on gametocyte development. Our data suggest that individual PfApiATs are partially redundant during asexual in vitro proliferation and fully redundant during gametocytogenesis of P. falciparum parasites. IMPORTANCE Malaria parasites live and multiply inside cells. To facilitate their extremely fast intracellular proliferation, they hijack and transform their host cells. This also requires the active uptake of nutrients, such as amino acids, from the host cell and the surrounding environment through various membranes that are the consequence of the parasite's intracellular lifestyle. In this paper, we focus on a family of putative amino acid transporters termed ApiAT. We show expression and localization of four transporters in the parasite plasma membrane of Plasmodium falciparum-infected erythrocytes that represent one interface of the pathogen to its host cell. We probed into the impact of functional inactivation of individual transporters on parasite growth in asexual and sexual blood stages of P. falciparum and reveal that only two of them show a modest but significant reduction in parasite proliferation but no impact on gametocytogenesis, pointing toward dispensability within this transporter family.


Subject(s)
Amino Acid Transport Systems/metabolism , Cell Membrane/metabolism , Fluorescence Resonance Energy Transfer/methods , Plasmodium falciparum/physiology , Protozoan Proteins/metabolism , Erythrocytes/parasitology , Green Fluorescent Proteins/metabolism , Host-Parasite Interactions , Humans , Malaria, Falciparum , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
11.
Cell Microbiol ; 23(9): e13341, 2021 09.
Article in English | MEDLINE | ID: mdl-33830607

ABSTRACT

The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single-celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of 12 known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represents structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Merozoites , Plasmodium falciparum , Protozoan Proteins
12.
mSphere ; 5(6)2020 12 23.
Article in English | MEDLINE | ID: mdl-33361125

ABSTRACT

Toxoplasma gondii and members of the genus Plasmodium are obligate intracellular parasites that leave their infected host cell upon a tightly controlled process of egress. Intracellular replication of the parasites occurs within a parasitophorous vacuole, and its membrane as well as the host plasma membrane need to be disrupted during egress, leading to host cell lysis. While several parasite-derived factors governing egress have been identified, much less is known about host cell factors involved in this process. Previously, RNA interference (RNAi)-based knockdown and antibody-mediated depletion identified a host signaling cascade dependent on guanine nucleotide-binding protein subunit alpha q (GNAQ) to be required for the egress of Toxoplasma tachyzoites and Plasmodium blood stage merozoites. Here, we used CRISPR/Cas9 technology to generate HeLa cells deficient in GNAQ and tested their capacity to support the egress of T. gondii tachyzoites and Plasmodium berghei liver stage parasites. While we were able to confirm the importance of GNAQ for the egress of T. gondii, we found that the egress of P. berghei liver stages was unaffected in the absence of GNAQ. These results may reflect differences between the lytic egress process in apicomplexans and the formation of host cell-derived vesicles termed merosomes by P. berghei liver stages.IMPORTANCE The coordinated release of apicomplexan parasites from infected host cells prior to reinvasion is a critical process for parasite survival and the spread of infection. While Toxoplasma tachyzoites and Plasmodium blood stages induce a fast disruption of their surrounding membranes during their egress from host cells, Plasmodium liver stages keep the host cell membrane intact and leave their host cell in host cell-derived vesicles called merosomes. The knockout of GNAQ, a protein involved in G-protein-coupled receptor signaling, demonstrates the importance of this host factor for the lytic egress of T. gondii tachyzoites. Contrastingly, the egress of P. berghei is independent of GNAQ at the liver stage, indicating the existence of a mechanistically distinct strategy to exit the host cell.


Subject(s)
Cell Membrane/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Hepatocytes/parasitology , Plasmodium berghei/physiology , Animals , CRISPR-Cas Systems , HeLa Cells , Humans , Malaria/parasitology , Plasmodium berghei/genetics , Toxoplasma/metabolism
13.
Cell Rep ; 31(12): 107817, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32579913

ABSTRACT

Proteins of the lipocalin family are known to bind small hydrophobic ligands and are involved in various physiological processes ranging from lipid transport to oxidative stress responses. The genome of the malaria parasite Plasmodium falciparum contains a single protein PF3D7_0925900 with a lipocalin signature. Using crystallography and small-angle X-ray scattering, we show that the protein has a tetrameric structure of typical lipocalin monomers; hence we name it P. falciparum lipocalin (PfLCN). We show that PfLCN is expressed in the intraerythrocytic stages of the parasite and localizes to the parasitophorous and food vacuoles. Conditional knockdown of PfLCN impairs parasite development, which can be rescued by treatment with the radical scavenger Trolox or by temporal inhibition of hemoglobin digestion. This suggests a key function of PfLCN in counteracting oxidative stress-induced cell damage during multiplication of parasites within erythrocytes.


Subject(s)
Lipocalins/chemistry , Lipocalins/metabolism , Malaria, Falciparum/parasitology , Parasites/metabolism , Plasmodium falciparum/metabolism , Animals , Cell Membrane/metabolism , Cell Survival , Crystallography, X-Ray , Erythrocytes/parasitology , Evolution, Molecular , Hemeproteins/metabolism , Humans , Models, Molecular , Oxidative Stress , Parasites/growth & development , Plasmodium falciparum/growth & development , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Vacuoles/metabolism
14.
J Mol Biol ; 432(4): 878-896, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31877322

ABSTRACT

Apicomplexan parasites contain rhoptries, which are specialized secretory organelles that coordinate host cell invasion. During the process of invasion, rhoptries secrete their contents to facilitate interaction with, and entry into, the host cell. Here, we report the crystal structure of the rhoptry protein Armadillo Repeats-Only (ARO) from the human malaria parasite, Plasmodium falciparum (PfARO). The structure of PfARO comprises five tandem Armadillo-like (ARM) repeats, with adjacent ARM repeats stacked in a head-to-tail orientation resulting in PfARO adopting an elongated curved shape. Interestingly, the concave face of PfARO contains two distinct patches of highly conserved residues that appear to play an important role in protein-protein interaction. We functionally characterized the P. falciparum homolog of ARO interacting protein (PfAIP) and demonstrate that it localizes to the rhoptries. We show that conditional mislocalization of PfAIP leads to deficient red blood cell invasion. Guided by the structure, we identified mutations of PfARO that lead to mislocalization of PfAIP. Using proximity-based biotinylation we probe into PfAIP interacting proteins.


Subject(s)
Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Humans , Malaria/physiopathology , Molecular Sequence Data , Mutagenesis/genetics , Mutagenesis/physiology , Mutation , Parasitemia/parasitology , Phylogeny , Plasmodium falciparum/genetics , Protein Transport/genetics , Protein Transport/physiology , Protozoan Proteins/genetics
15.
Cell ; 179(5): 1112-1128.e26, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730853

ABSTRACT

Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.


Subject(s)
Genome, Protozoan , Life Cycle Stages/genetics , Liver/metabolism , Liver/parasitology , Plasmodium berghei/growth & development , Plasmodium berghei/genetics , Alleles , Amino Sugars/biosynthesis , Animals , Culicidae/parasitology , Erythrocytes/parasitology , Fatty Acid Synthases/metabolism , Fatty Acids/metabolism , Gene Knockout Techniques , Genotype , Models, Biological , Mutation/genetics , Parasites/genetics , Parasites/growth & development , Phenotype , Plasmodium berghei/metabolism , Ploidies , Reproduction
16.
mSphere ; 3(1)2018.
Article in English | MEDLINE | ID: mdl-29404413

ABSTRACT

During their development within the vertebrate host, Plasmodium parasites infect hepatocytes and red blood cells. Within these cells, parasites are surrounded by a parasitophorous vacuole membrane (PVM). The PVM plays an essential role for the interaction of parasites with their host cells; however, only a limited number of proteins of this membrane have been identified so far. This is partially because systematic proteomic analysis of the protein content of the PVM has been difficult in the past, due to difficulties encountered in attempts to separate the PVM from other membranes such as the parasite plasma membrane. In this study, we adapted the BioID technique to in vitro-cultivated Plasmodium berghei blood stage parasites and utilized the promiscuous biotin ligase BirA* fused to PVM-resident exported protein 1 to biotinylate proteins of the PVM. These we further processed by affinity purification, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and label-free quantitation, leading to a list of 61 known and candidate PVM proteins. Seven proteins were analyzed further during blood and liver stage development. This resulted in the identification of three novel PVM proteins, which were the serine/threonine protein phosphatase UIS2 (PlasmoDB accession no. PBANKA_1328000) and two conserved Plasmodium proteins with unknown functions (PBANKA_0519300 and PBANKA_0509000). In conclusion, our report expands the number of known PVM proteins and experimentally validates BioID as a powerful method to screen for novel constituents of specific cellular compartments in P. berghei. IMPORTANCE Intracellular pathogens are often surrounded by a host-cell derived membrane. This membrane is modified by the pathogens to their own needs and is crucial for their intracellular lifestyle. In Plasmodium parasites, this membrane is referred to as the PVM and only a limited number of its proteins are known so far. Here, we applied in rodent P. berghei parasites a method called BioID, which is based on biotinylation of proximal and interacting proteins by the promiscuous biotin ligase BirA*, and demonstrated its usefulness in identification of novel PVM proteins.

17.
Malar J ; 16(1): 305, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28764716

ABSTRACT

BACKGROUND: Malaria research is greatly dependent on and has drastically advanced with the possibility of genetically modifying Plasmodium parasites. The commonly used transfection protocol by Janse and colleagues utilizes blood stage-derived Plasmodium berghei schizonts that have been purified from a blood culture by density gradient centrifugation. Naturally, this transfection protocol depends on the availability of suitably infected mice, constituting a time-based variable. In this study, the potential of transfecting liver stage-derived merozoites was explored. In cell culture, upon merozoite development, infected cells detach from the neighbouring cells and can be easily harvested from the cell culture supernatant. This protocol offers robust experimental timing and temporal flexibility. METHODS: HeLa cells are infected with P. berghei sporozoites to obtain liver stage-derived merozoites, which are harvested from the cell culture supernatant and are transfected using the Amaxa Nucleofector® electroporation technology. RESULTS: Using this protocol, wild type P. berghei ANKA strain and marker-free PbmCherryHsp70-expressing P. berghei parasites were successfully transfected with DNA constructs designed for integration via single- or double-crossover homologous recombination. CONCLUSION: An alternative protocol for Plasmodium transfection is hereby provided, which uses liver stage-derived P. berghei merozoites for transfection. This protocol has the potential to substantially reduce the number of mice used per transfection, as well as to increase the temporal flexibility and robustness of performing transfections, if mosquitoes are routinely present in the laboratory. Transfection of liver stage-derived P. berghei parasites should enable generation of transgenic parasites within 8-18 days.


Subject(s)
Merozoites/physiology , Microorganisms, Genetically-Modified/physiology , Plasmodium berghei/physiology , Animals , Cell Culture Techniques , Liver , Merozoites/genetics , Merozoites/growth & development , Mice , Mice, Inbred BALB C , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/growth & development , Plasmodium berghei/genetics , Schizonts/genetics , Schizonts/growth & development , Schizonts/physiology , Transfection
18.
Sci Rep ; 7(1): 9740, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851956

ABSTRACT

During asexual replication within the Anopheles mosquito and their vertebrate host, Plasmodium parasites depend on the generation of a massive amount of new plasma membrane to produce thousands of daughter parasites. How the parasite plasma membrane (PPM) is formed has mostly been studied by electron microscopy, which does not allow an insight into the dynamics of this process. We generated a Plasmodium berghei reporter parasite line by GFP-tagging of a non-essential PPM-localized protein, and followed plasma membrane development in living parasites through the entire Plasmodium life cycle. By generating double-fluorescent parasites in which the PPM is visualized in combination with the parasite endoplasmic reticulum, we show that membrane contact sites are formed between both membrane systems during oocyst and liver stage development that might be used to deliver lipids to the dramatically expanding PPM. In conclusion, we have established a powerful tool to follow PPM development in living parasites, which promises to greatly expand our knowledge of membrane biology in the Plasmodium parasite.


Subject(s)
Cell Membrane/metabolism , Intravital Microscopy/methods , Plasmodium berghei/physiology , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Membrane Proteins/analysis , Membrane Proteins/genetics , Microscopy, Fluorescence , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Staining and Labeling/methods
19.
mBio ; 8(2)2017 04 11.
Article in English | MEDLINE | ID: mdl-28400525

ABSTRACT

A crucial step in the life cycle of Plasmodium parasites is the transition from the liver stage to the blood stage. Hepatocyte-derived merozoites reach the blood vessels of the liver inside host cell-derived vesicles called merosomes. The molecular basis of merosome formation is only partially understood. Here we show that Plasmodium berghei liver stage merozoites, upon rupture of the parasitophorous vacuole membrane, destabilize the host cell membrane (HCM) and induce separation of the host cell actin cytoskeleton from the HCM. At the same time, the phospholipid and protein composition of the HCM appears to be substantially altered. This includes the loss of a phosphatidylinositol 4,5-bisphosphate (PIP2) reporter and the PIP2-dependent actin-plasma membrane linker ezrin from the HCM. Furthermore, transmembrane domain-containing proteins and palmitoylated and myristoylated proteins, as well as glycosylphosphatidylinositol-anchored proteins, lose their HCM localization. Collectively, these findings provide an explanation of HCM destabilization during Plasmodium liver stage egress and thereby contribute to our understanding of the molecular mechanisms that lead to merosome formation.IMPORTANCE Egress from host cells is an essential process for intracellular pathogens, allowing successful infection of other cells and thereby spreading the infection. Here we describe the molecular details of a novel egress strategy of Plasmodium parasites infecting hepatocytes. We show that toward the end of the liver stage, parasites induce a breakdown of the host cell actin cytoskeleton, leading to destabilization of the host cell plasma membrane. This, in turn, results in the formation of membrane vesicles (merosomes), in which parasites can safely migrate from liver tissue to the bloodstream to infect red blood cells and start the pathogenic phase of malaria.


Subject(s)
Cell Membrane/chemistry , Hepatocytes/parasitology , Membrane Proteins/analysis , Phospholipids/analysis , Plasmodium berghei/physiology , Animals , Cells, Cultured , Mice, Inbred BALB C
20.
Nat Rev Microbiol ; 15(1): 37-54, 2017 01.
Article in English | MEDLINE | ID: mdl-27890922

ABSTRACT

Over the past decade, major advances in imaging techniques have enhanced our understanding of Plasmodium spp. parasites and their interplay with mammalian hosts and mosquito vectors. Cryoelectron tomography, cryo-X-ray tomography and super-resolution microscopy have shifted paradigms of sporozoite and gametocyte structure, the process of erythrocyte invasion by merozoites, and the architecture of Maurer's clefts. Intravital time-lapse imaging has been revolutionary for our understanding of pre-erythrocytic stages of rodent Plasmodium parasites. Furthermore, high-speed imaging has revealed the link between sporozoite structure and motility, and improvements in time-lapse microscopy have enabled imaging of the entire Plasmodium falciparum erythrocytic cycle and the complete Plasmodium berghei pre-erythrocytic stages for the first time. In this Review, we discuss the contribution of key imaging tools to these and other discoveries in the malaria field over the past 10 years.


Subject(s)
Erythrocytes/parasitology , Host-Parasite Interactions/physiology , Merozoites/physiology , Plasmodium berghei/physiology , Plasmodium falciparum/physiology , Sporozoites/physiology , Animals , Cryoelectron Microscopy , Electron Microscope Tomography , Humans , Malaria/parasitology , Malaria/pathology , Merozoites/ultrastructure , Plasmodium berghei/ultrastructure , Plasmodium falciparum/ultrastructure , Sporozoites/ultrastructure , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...