Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 810: 152146, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34864036

ABSTRACT

Riparian forest buffers have multiple benefits for biodiversity and ecosystem services in both freshwater and terrestrial habitats but are rarely implemented in water ecosystem management, partly reflecting the lack of information on the effectiveness of this measure. In this context, social learning is valuable to inform stakeholders of the efficacy of riparian vegetation in mitigating stream degradation. We aim to develop a Bayesian belief network (BBN) model for application as a learning tool to simulate and assess the reach- and segment-scale effects of riparian vegetation properties and land use on instream invertebrates. We surveyed reach-scale riparian conditions, extracted segment-scale riparian and subcatchment land use information from geographic information system data, and collected macroinvertebrate samples from four catchments in Europe (Belgium, Norway, Romania, and Sweden). We modelled the ecological condition based on the Average Score Per Taxon (ASPT) index, a macroinvertebrate-based index widely used in European bioassessment, as a function of different riparian variables using the BBN modelling approach. The results of the model simulations provided insights into the usefulness of riparian vegetation attributes in enhancing the ecological condition, with reach-scale riparian vegetation quality associated with the strongest improvements in ecological status. Specifically, reach-scale buffer vegetation of score 3 (i.e. moderate quality) generally results in the highest probability of a good ASPT score (99-100%). In contrast, a site with a narrow width of riparian trees and a small area of trees with reach-scale buffer vegetation of score 1 (i.e. low quality) predicts a high probability of a bad ASPT score (74%). The strengths of the BBN model are the ease of interpretation, fast simulation, ability to explicitly indicate uncertainty in model outcomes, and interactivity. These merits point to the potential use of the BBN model in workshop activities to stimulate key learning processes that help inform the management of riparian zones.


Subject(s)
Ecosystem , Rivers , Animals , Bayes Theorem , Forests , Invertebrates
2.
J Anim Ecol ; 90(7): 1600-1604, 2021 07.
Article in English | MEDLINE | ID: mdl-34236087

ABSTRACT

In focus: Nash, L. N., Antiqueira, P. A. P., Romero, G. Q., de Omena, P. M., and Kratina, P. (2021). Warming of aquatic ecosystems disrupts aquatic-terrestrial linkages in the tropics. Journal of Animal Ecology. Meta-ecosystem ecology offers a holistic framework linking populations, communities and ecosystems in heterogeneous landscapes. This perspective is particularly relevant as anthropogenic drivers of environmental change proliferate, with the potential for impacts to propagate to spatially connected habitats. In aquatic ecosystems, reciprocal exchanges of energy, materials and organisms that form strong connections with adjacent terrestrial habitats can be disrupted by human impacts. Nash et al. (2021) demonstrate how a warming environment alters aquatic-terrestrial linkages by measuring rates of aquatic insect emergence and decomposition in a tropical context. While decomposition predictably increased with warming, insect emergence was greatly reduced. Using metabolic theory, I highlight how these results deviate from previous studies and help underscore the need for comparative research in different biomes. I conclude by exploring where progress can be made in quantifying, predicting and utilising the connectivity of ecosystems to fully realise the potential of a meta-ecosystem perspective and help address the dual crises of biodiversity loss and climate change.


Subject(s)
Biodiversity , Ecosystem , Animals , Climate Change , Ecology , Insecta
3.
Nat Commun ; 12(1): 3700, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140471

ABSTRACT

The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent.


Subject(s)
Biota , Ecosystem , Rivers , Animals , Biodiversity , Biomass , Body Size , Chironomidae/physiology , Climate , Ephemeroptera/physiology , Insecta/physiology , Plant Leaves/chemistry , Rainforest , Rivers/chemistry , Rivers/microbiology , Rivers/parasitology , Rivers/virology , Tropical Climate , Tundra
4.
Sci Adv ; 7(13)2021 03.
Article in English | MEDLINE | ID: mdl-33771867

ABSTRACT

Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes.

5.
Glob Chang Biol ; 26(11): 6363-6382, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32881210

ABSTRACT

Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release a multitude of micropollutants (MPs; i.e., synthetic chemicals) and microbes (including antibiotic-resistant bacteria) to receiving environments. This pollution may have pervasive impacts on biodiversity and ecosystem services. Viewed through multiple lenses of macroecological and ecotoxicological theory, we combined field, flume, and laboratory experiments to determine the effects of wastewater (WW) on microbial communities and organic-matter processing using a standardized decomposition assay. First, we conducted a mensurative experiment sampling 60 locations above and below WWTP discharges in 20 Swiss streams. Microbial respiration and decomposition rates were positively influenced by WW inputs via warming and nutrient enrichment, but with a notable exception: WW decreased the activation energy of decomposition, indicating a "slowing" of this fundamental ecosystem process in response to temperature. Second, next-generation sequencing indicated that microbial community structure below WWTPs was altered, with significant compositional turnover, reduced richness, and evidence of negative MP influences. Third, a series of flume experiments confirmed that although diluted WW generally has positive influences on microbial-mediated processes, the negative effects of MPs are "masked" by nutrient enrichment. Finally, transplant experiments suggested that WW-borne microbes enhance decomposition rates. Taken together, our results affirm the multiple stressor paradigm by showing that different aspects of WW (warming, nutrients, microbes, and MPs) jointly influence ecosystem functioning in complex ways. Increased respiration rates below WWTPs potentially generate ecosystem "disservices" via greater carbon evasion from streams and rivers. However, toxic MP effects may fundamentally alter ecological scaling relationships, indicating the need for a rapprochement between ecotoxicological and macroecological perspectives.


Subject(s)
Microbiota , Rivers , Bacteria , Ecosystem , Wastewater , Water Quality
7.
J Anim Ecol ; 89(3): 730-744, 2020 03.
Article in English | MEDLINE | ID: mdl-31691281

ABSTRACT

Natural and anthropogenic disturbances commonly alter patterns of biodiversity and ecosystem functioning. However, how networks of interacting species respond to these changes remains poorly understood. We described aquatic food webs using invertebrate and fish community composition, functional traits and stable isotopes from twelve agricultural streams along a landscape disturbance gradient. We predicted that excessive deposition of fine inorganic sediment (sedimentation) associated with agricultural activities would negatively influence aquatic trophic diversity (e.g. reduced vertical and horizontal trophic niche breadths). We hypothesized that multiple mechanisms might cause trophic niche 'compression', as indicated by changes in realized trophic roles. Food-web properties based on consumer stable isotope data (δ13 C and δ15 N) showed that increasing sediment disturbance was associated with reduced trophic diversity. In particular, the aquatic invertebrate community occupied a smaller area in isotopic niche space along the sedimentation gradient that was best explained by a narrowing of the invertebrate community δ13 C range. Decreased niche partitioning, driven by increasing habitat homogeneity, environmental filtering and resource scarcity all seemingly lead to greater trophic equivalency caused by the collapse of the autochthonous food-web channel. Bayesian mixing-model analyses supported this contention with invertebrate consumers increasingly reliant on detritus along the sedimentation gradient, and predatory invertebrates relying more on the prey using these basal resources. The narrowing of the fish community δ13 C range along the sedimentation gradient contributed to an apparent 'trophic shift' towards terrestrial carbon, further indicating the loss of the autochthonous food-web channel. On the vertical trophic niche axis, fish became increasingly separated from aquatic invertebrates with an increase in their estimated trophic position. In combination, these responses were most likely mediated through reduced fish densities and a diminished reliance on aquatic prey. Although species losses remain a major threat to ecosystem integrity, the functional roles of biota that persist dictate how food webs and ecosystem functioning respond to environmental change. Sedimentation was associated with nonlinear reductions in trophic diversity which could affect the functioning and stability of aquatic ecosystems. Our study helps explain how multiple mechanisms may radically reshape food-web properties in response to this type of disturbance.


Subject(s)
Ecosystem , Food Chain , Animals , Bayes Theorem , Biodiversity , Invertebrates , Nitrogen Isotopes/analysis
8.
Ecol Evol ; 9(20): 11695-11706, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31695879

ABSTRACT

The growing threat of global climate change has led to a profusion of studies examining the effects of warming on biota. Despite the potential importance of natural variability such as diurnal temperature fluctuations, most experimental studies on warming are conducted under stable temperatures. Here, we investigated whether the responses of an aquatic invertebrate grazer (Lymnaea stagnalis) to an increased average temperature differ when the thermal regime is either constant or fluctuates diurnally. Using thermal response curves for several life-history and immune defense traits, we first identified the optimum and near-critically high temperatures that Lymnaea potentially experience during summer heat waves. We then exposed individuals that originated from three different populations to these two temperatures under constant or fluctuating thermal conditions. After 7 days, we assessed growth, reproduction, and two immune parameters (phenoloxidase-like activity and antibacterial activity of hemolymph) from each individual. Exposure to the near-critically high temperature led to increased growth rates and decreased antibacterial activity of hemolymph compared to the optimum temperature, whilst temperature fluctuations had no effect on these traits. The results indicate that the temperature level per se, rather than the variability in temperature was the main driver altering trait responses in our study species. Forecasting responses in temperature-related responses remains challenging, due to system-specific properties that can include intraspecific variation. However, our study indicates that experiments examining the effects of warming using constant temperatures can give similar predictions as studies with fluctuating thermal dynamics, and may thus be useful indicators of responses in nature.

9.
Sci Adv ; 5(1): eaav0486, 2019 01.
Article in English | MEDLINE | ID: mdl-30662951

ABSTRACT

River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.


Subject(s)
Carbon Cycle/physiology , Ecosystem , Environmental Monitoring/methods , Rivers/microbiology , Temperature , Human Activities , Humans
11.
Water Res ; 110: 366-377, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27919541

ABSTRACT

Micropollutants enter surface waters through various pathways, of which wastewater treatment plants (WWTPs) are a major source. The large diversity of micropollutants and their many modes of toxic action pose a challenge for assessing environmental risks. In this study, we investigated the potential impact of WWTPs on receiving ecosystems by describing concentration patterns of micropollutants, predicting acute risks for aquatic organisms and validating these results with macroinvertebrate biomonitoring data. Grab samples were taken upstream, downstream and at the effluent of 24 Swiss WWTPs during low flow conditions across independent catchments with different land uses. Using liquid chromatography high resolution tandem mass spectrometry, a comprehensive target screening of almost 400 organic substances, focusing mainly on pesticides and pharmaceuticals, was conducted at two time points, and complemented with the analysis of a priority mixture of 57 substances over eight time points. Acute toxic pressure was predicted using the risk assessment approach of the multi-substance potentially affected fraction, first applying concentration addition for substances with the same toxic mode of action and subsequently response addition for the calculation of the risk of the total mixture. This toxic pressure was compared to macroinvertebrate sensitivity to pesticides (SPEAR index) upstream and downstream of the WWTPs. The concentrations were, as expected, especially for pharmaceuticals and other household chemicals higher downstream than upstream, with the detection frequency of plant protection products upstream correlating with the fraction of arable land in the catchments. While the concentration sums downstream were clearly dominated by pharmaceuticals or other household chemicals, the acute toxic pressure was mainly driven by pesticides, often caused by the episodic occurrence of these compounds even during low flow conditions. In general, five single substances explained much of the total risk, with diclofenac, diazinon and clothianidin as the main drivers. Despite the low predicted acute risk of 0%-2.1% for affected species, a significant positive correlation with macroinvertebrate sensitivity to pesticides was observed. However, more effect data for pharmaceuticals and a better quantification of episodic pesticide pollution events are needed for a more comprehensive risk assessment.


Subject(s)
Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Environmental Monitoring , Pesticides
12.
Ecol Evol ; 6(12): 3923-39, 2016 06.
Article in English | MEDLINE | ID: mdl-27516855

ABSTRACT

Human land uses and population growth represent major global threats to biodiversity and ecosystem services. Understanding how biological communities respond to multiple drivers of human-induced environmental change is fundamental for conserving ecosystems and remediating degraded habitats. Here, we used a replicated 'real-world experiment' to study the responses of invertebrate communities to wastewater perturbations across a land-use intensity gradient in 12 Swiss streams. We used different taxonomy and trait-based community descriptors to establish the most sensitive indicators detecting impacts and to help elucidate potential causal mechanisms of change. First, we predicted that streams in catchments adversely impacted by human land-uses would be less impaired by wastewater inputs because their invertebrate communities should be dominated by pollution-tolerant taxa ('environmental context'). Second, we predicted that the negative effects of wastewater on stream invertebrate communities should be larger in streams that receive proportionally more wastewater ('magnitude of disturbance'). In support of the 'environmental context' hypothesis, we found that change in the Saprobic Index (a trait-based indicator of tolerance to organic pollution) was associated with upstream community composition; communities in catchments with intensive agricultural land uses (e.g., arable cropping and pasture) were generally more resistant to eutrophication associated with wastewater inputs. We also found support for the 'magnitude of disturbance' hypothesis. The SPEAR Index (a trait-based indicator of sensitivity to pesticides) was more sensitive to the relative input of effluent, suggesting that toxic influences of wastewater scale with dilution. Whilst freshwater pollution continues to be a major environmental problem, our findings highlight that the same anthropogenic pressure (i.e., inputs of wastewater) may induce different ecological responses depending on the environmental context and community metrics used. Thus, remediation strategies aiming to improve stream ecological status (e.g., rehabilitating degraded reaches) need to consider upstream anthropogenic influences and the most appropriate indicators of restoration success.

13.
Ecol Appl ; 23(5): 1036-47, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23967573

ABSTRACT

Agricultural land uses can impact stream ecosystems by reducing suitable habitat, altering flows, and increasing inputs of diffuse pollutants including fine inorganic sediment (< 2 mm). These changes have been linked to altered community composition and declines in biodiversity. Determining the mechanisms driving stream biotic responses, particularly threshold impacts, has, however, proved elusive. To investigate a sediment threshold response by benthic invertebrates, an intensive survey of 30 agricultural streams was conducted along gradients of deposited sediment and dissolved nutrients. Partial redundancy analysis showed that invertebrate community composition changed significantly along the gradient of deposited fine sediment, whereas the effect of dissolved nitrate was weak. Pollution-sensitive invertebrates (%EPT, Ephemeroptera, Plecoptera, Trichoptera) demonstrated a strong nonlinear response to sediment, and change-point analysis indicated marked declines beyond a threshold of -20% fine sediment covering the streambed. Structural equation modeling indicated that decreased habitat availability (i.e., coarse substrate and associated interstices) was the key driver affecting pollution-sensitive invertebrates, with degraded riparian condition controlling resources through direct (e.g., inputs) and indirect (e.g., flow-mediated) effects on deposited sediment. The identification of specific effects thresholds and the underlying mechanisms (e.g., loss of habitat) driving these changes will assist managers in setting sediment criteria and standards to better guide stream monitoring and rehabilitation.


Subject(s)
Ecosystem , Environmental Monitoring , Geologic Sediments , Invertebrates/physiology , Rivers , Agriculture , Animals , Conservation of Natural Resources , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...