Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(11): e0293083, 2023.
Article in English | MEDLINE | ID: mdl-37939028

ABSTRACT

Biodiversity loss is a major global challenge and minimizing extinction rates is the goal of several multilateral environmental agreements. Policy decisions require comprehensive, spatially explicit information on species' distributions and threats. We present an analysis of the conservation status of 14,669 European terrestrial, freshwater and marine species (ca. 10% of the continental fauna and flora), including all vertebrates and selected groups of invertebrates and plants. Our results reveal that 19% of European species are threatened with extinction, with higher extinction risks for plants (27%) and invertebrates (24%) compared to vertebrates (18%). These numbers exceed recent IPBES (Intergovernmental Platform on Biodiversity and Ecosystem Services) assumptions of extinction risk. Changes in agricultural practices and associated habitat loss, overharvesting, pollution and development are major threats to biodiversity. Maintaining and restoring sustainable land and water use practices is crucial to minimize future biodiversity declines.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Biodiversity , Vertebrates , Invertebrates , Plants , Extinction, Biological , Endangered Species
2.
Nat Commun ; 14(1): 4304, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474503

ABSTRACT

Climate change has been associated with both latitudinal and elevational shifts in species' ranges. The extent, however, to which climate change has driven recent range shifts alongside other putative drivers remains uncertain. Here, we use the changing distributions of 378 European breeding bird species over 30 years to explore the putative drivers of recent range dynamics, considering the effects of climate, land cover, other environmental variables, and species' traits on the probability of local colonisation and extinction. On average, species shifted their ranges by 2.4 km/year. These shifts, however, were significantly different from expectations due to changing climate and land cover. We found that local colonisation and extinction events were influenced primarily by initial climate conditions and by species' range traits. By contrast, changes in climate suitability over the period were less important. This highlights the limitations of using only climate and land cover when projecting future changes in species' ranges and emphasises the need for integrative, multi-predictor approaches for more robust forecasting.


Subject(s)
Birds , Climate Change , Animals , Ecosystem
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220198, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37246375

ABSTRACT

Detecting biodiversity change and identifying its causes is challenging because biodiversity is multifaceted and temporal data often contain bias. Here, we model temporal change in species' abundance and biomass by using extensive data describing the population sizes and trends of native breeding birds in the United Kingdom (UK) and the European Union (EU). In addition, we explore how species' population trends vary with species' traits. We demonstrate significant change in the bird assemblages of the UK and EU, with substantial reductions in overall bird abundance and losses concentrated in a relatively small number of abundant and smaller sized species. By contrast, rarer and larger birds had generally fared better. Simultaneously, overall avian biomass had increased very slightly in the UK and was stable in the EU, indicating a change in community structure. Abundance trends across species were positively correlated with species' body mass and with trends in climate suitability, and varied with species' abundance, migration strategy and niche associations linked to diet. Our work highlights how changes in biodiversity cannot be captured easily by a single number; care is required when measuring and interpreting biodiversity change given that different metrics can provide very different insights. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Subject(s)
Biodiversity , Climate Change , Animals , Biomass , United Kingdom , Birds , Ecosystem
4.
PLoS Biol ; 21(2): e3001991, 2023 02.
Article in English | MEDLINE | ID: mdl-36854036

ABSTRACT

The conservation of evolutionary history has been linked to increased benefits for humanity and can be captured by phylogenetic diversity (PD). The Evolutionarily Distinct and Globally Endangered (EDGE) metric has, since 2007, been used to prioritise threatened species for practical conservation that embody large amounts of evolutionary history. While there have been important research advances since 2007, they have not been adopted in practice because of a lack of consensus in the conservation community. Here, building from an interdisciplinary workshop to update the existing EDGE approach, we present an "EDGE2" protocol that draws on a decade of research and innovation to develop an improved, consistent methodology for prioritising species conservation efforts. Key advances include methods for dealing with uncertainty and accounting for the extinction risk of closely related species. We describe EDGE2 in terms of distinct components to facilitate future revisions to its constituent parts without needing to reconsider the whole. We illustrate EDGE2 by applying it to the world's mammals. As we approach a crossroads for global biodiversity policy, this Consensus View shows how collaboration between academic and applied conservation biologists can guide effective and practical priority-setting to conserve biodiversity.


Subject(s)
Biodiversity , Endangered Species , Animals , Phylogeny , Biological Evolution , Humanities , Mammals
5.
Conserv Biol ; 36(1): e13721, 2022 02.
Article in English | MEDLINE | ID: mdl-33595149

ABSTRACT

Species monitoring, defined here as the repeated, systematic collection of data to detect long-term changes in the populations of wild species, is a vital component of conservation practice and policy. We created a database of nearly 1200 schemes, ranging in start date from 1800 to 2018, to review spatial, temporal, taxonomic, and methodological patterns in global species monitoring. We identified monitoring schemes through standardized web searches, an online survey of stakeholders, in-depth national searches in a sample of countries, and a review of global biodiversity databases. We estimated the total global number of monitoring schemes operating at 3300-15,000. Since 2000, there has been a sharp increase in the number of new schemes being initiated in lower- and middle-income countries and in megadiverse countries, but a decrease in high-income countries. The total number of monitoring schemes in a country and its per capita gross domestic product were strongly, positively correlated. Schemes that were active in 2018 had been running for an average of 21 years in high-income countries, compared with 13 years in middle-income countries and 10 years in low-income countries. In high-income countries, over one-half of monitoring schemes received government funding, but this was less than one-quarter in low-income countries. Data collection was undertaken partly or wholly by volunteers in 37% of schemes, and such schemes covered significantly more sites and species than those undertaken by professionals alone. Birds were by far the most widely monitored taxonomic group, accounting for around half of all schemes, but this bias declined over time. Monitoring in most taxonomic groups remains sparse and uncoordinated, and most of the data generated are elusive and unlikely to feed into wider biodiversity conservation processes. These shortcomings could be addressed by, for example, creating an open global meta-database of biodiversity monitoring schemes and enhancing capacity for species monitoring in countries with high biodiversity. Article impact statement: Species population monitoring for conservation purposes remains strongly biased toward a few vertebrate taxa in wealthier countries.


Una Revisión Global Cuantitativa del Monitoreo Poblacional de Especies Resumen El monitoreo de especies, definido aquí como la recolección sistemática y repetida de datos para detectar cambios a largo plazo en las poblaciones de las especies silvestres, es un componente vital de la práctica y las políticas de la conservación. Generamos una base de datos de casi 1,200 esquemas, con un rango de fecha de inicio desde 1800 hasta 2018, para revisar los patrones espaciales, temporales, taxonómicos y metodológicos en el monitoreo global de especies. Identificamos los esquemas de monitoreo por medio de búsquedas estandarizadas en línea, una encuesta digital realizada a los actores, búsquedas a profundidad en una muestra de países y en una revisión global de las bases de datos sobre la biodiversidad. Estimamos el número total mundial de esquemas funcionales de monitoreo entre 3,300 y 15,000. Desde el 2000, ha habido un fuerte aumento en el número de esquemas nuevos que han iniciado en países de bajo o mediano ingreso y en países megadiversos, pero una disminución en los países de alto ingreso. El número total de esquemas de monitoreo en un país y su producto interno bruto per cápita tuvieron una correlación sólida y positiva. Los esquemas que estaban activos en 2018 lo habían estado en un promedio de 21 años en los países de alto ingreso, comparado con un promedio de 13 años en los países de mediano ingreso y de 10 años en los países de bajo ingreso. En los países de alto ingreso, más de la mitad de los esquemas de monitoreo recibieron financiamiento del gobierno, comparado con menos de un cuarto de los esquemas en los países de bajo ingreso. La recolección de datos se realizó parcial o totalmente por voluntarios en 37% de los esquemas, y dichos esquemas cubrieron significativamente más sitios y especies que aquellos realizados sólo por profesionales. Las aves fueron por mucho el grupo taxonómico más monitoreado, comprendiendo casi la mitad de todos los esquemas, pero este sesgo declinó con el tiempo. El monitoreo en la mayoría de los grupos taxonómicos todavía es disperso y descoordinado, y la mayoría de los datos generados son vagos y tienen poca probabilidad de alimentar procesos más amplios de conservación de biodiversidad. Estas deficiencias podrían abordarse, por ejemplo, creando una meta-base de datos globales abiertos de los esquemas de monitoreo de la biodiversidad y mejorando la capacidad para el monitoreo de especies en los países con alta biodiversidad.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals , Birds , Data Collection , Humans , Volunteers
6.
Ecol Evol ; 11(23): 16647-16660, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938463

ABSTRACT

Although global assessments provide evidence of biodiversity decline, some have questioned the strength of the evidence, with local assemblage studies often showing a more balanced picture of biodiversity change. The multifaceted nature of biodiversity and imperfect monitoring datasets may partially explain these findings. Here, using an extensive dataset, we find significant biodiversity loss in the native avifauna of the European Union (EU). We estimate a decline of 17-19% in the overall breeding bird abundance since 1980: a loss of 560-620 million individual birds. Both total and proportional declines in bird numbers are high among species associated with agricultural land. The distribution of species' population growth rates (ln) is centered close to zero, with numerical decline driven by substantial losses in abundant species. Our work supports previous assessments indicating substantial recent biodiversity loss and calls to reduce the threat of extinctions and restore species' abundances, for the sake of nature and people.

7.
Conserv Biol ; 35(6): 1833-1849, 2021 12.
Article in English | MEDLINE | ID: mdl-34289517

ABSTRACT

Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.


RESUMEN: Reconociendo que era imperativo evaluar la recuperación de especies y el impacto de la conservación, la Unión Internacional para la Conservación de la Naturaleza (UICN) convocó en 2012 al desarrollo de una "Lista Verde de Especies" (ahora el Estatus Verde de las Especies de la UICN). Un marco de referencia preliminar de una Lista Verde de Especies para evaluar el progreso de las especies hacia la recuperación, publicado en 2018, proponía 2 componentes separados pero interconectados: un método estandarizado (i.e., medición en relación con puntos de referencia de la viabilidad de especies, funcionalidad y distribución antes del impacto) para determinar el estatus de recuperación actual (puntuación de recuperación de la especie) y la aplicación de ese método para estimar impactos en el pasado y potenciales de conservación basados en 4 medidas (legado de conservación, dependencia de conservación, ganancia de conservación y potencial de recuperación). Probamos el marco de referencia con 181 especies representantes de diversos taxa, historias de vida, biomas, y categorías (riesgo de extinción) en la Lista Roja de la IUCN. Con base en la distribución observada de la puntuación de recuperación de las especies, proponemos las siguientes categorías de recuperación de la especie: totalmente recuperada, ligeramente mermada, moderadamente mermada, mayormente mermada, gravemente mermada, extinta en estado silvestre, e inderterminada. Cincuenta y nueve por ciento de las especies se consideraron mayormente o gravemente mermada. Aunque hubo una relación negativa entre el riesgo de extinción y la puntuación de recuperación de la especie, la variación fue considerable. Algunas especies en las categorías de riesgo bajas fueron evaluadas como más lejos de recuperarse que aquellas con alto riesgo. Esto enfatiza que la recuperación de especies es diferente conceptualmente al riesgo de extinción y refuerza la utilidad del Estado Verde de las Especies de la UICN para comprender integralmente el estatus de conservación de especies. Aunque el riesgo de extinción no predijo el legado de conservación, la dependencia de conservación o la ganancia de conservación, se correlacionó positivamente con la potencial de recuperación. Solo 1.7% de las especies probadas fue categorizado como cero en los 4 indicadores de impacto de la conservación, lo que indica que la conservación ha jugado, o jugará, un papel en la mejoría o mantenimiento del estatus de la especie la gran mayoría de ellas. Con base en nuestros resultados, diseñamos una versión actualizada del marco de referencia para la evaluación que introduce la opción de utilizar una línea de base dinámica para evaluar los impactos futuros de la conservación en el corto plazo y redefine corto plazo como 10 años.


Subject(s)
Endangered Species , Extinction, Biological , Animals , Biodiversity , Conservation of Natural Resources , Ecosystem , Risk
8.
Conserv Biol ; 34(5): 1252-1261, 2020 10.
Article in English | MEDLINE | ID: mdl-32058610

ABSTRACT

Birds have been comprehensively assessed on the International Union for Conservation of Nature (IUCN) Red List more times than any other taxonomic group. However, to date, generation lengths have not been systematically estimated to scale population trends when undertaking assessments, as required by the criteria of the IUCN Red List. We compiled information from major databases of published life-history and trait data for all birds and imputed missing life-history data as a function of species traits with generalized linear mixed models. Generation lengths were derived for all species, based on our modeled values of age at first breeding, maximum longevity, and annual adult survival. The resulting generation lengths varied from 1.42 to 27.87 years (median 2.99). Most species (61%) had generation lengths <3.33 years, meaning that the period of 3 generations-over which population declines are assessed under criterion A-was <10 years, which is the value used for IUCN Red List assessments of species with short generation times. For these species, our trait-informed estimates of generation length suggested that 10 years is a robust precautionary value for threat assessment. In other cases, however, for whole families, genera, or individual species, generation length had a substantial impact on their estimated extinction risk, resulting in higher extinction risk in long-lived species than in short-lived species. Although our approach effectively addressed data gaps, generation lengths for some species may have been underestimated due to a paucity of life-history data. Overall, our results will strengthen future extinction-risk assessments and augment key databases of avian life-history and trait data.


Duraciones Generacionales de las Aves del Mundo y sus Implicaciones para el Riesgo de Extinción Resumen Las aves han sido valoradas integralmente en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN) más veces que cualquier otro grupo taxonómico. Sin embargo, a la fecha, las duraciones generacionales no han sido estimadas sistemáticamente para escalar las tendencias poblacionales cuando se realizan las valoraciones, como lo requieren los criterios de la Lista Roja de la UICN. Compilamos información a partir de las principales bases de datos de historias de vida y datos de características publicadas para todas las aves e imputamos los datos faltantes de historias de vida como una función de las características de especies con modelos lineales mixtos generalizados. La duración por generación estuvo derivada para todas las especies con base en nuestros valores modelados de edad durante la primera reproducción, la longevidad máxima y la supervivencia anual de adultos. La duración por generación resultante varió de 1.42 a 27.87 años (mediana: 2.99). La mayoría de las especies (61%) tuvo una duración generacional <3.33 años, lo que significa que el periodo de tres generaciones - durante el cual se valoran las declinaciones poblacionales bajo el Criterio A - es <10 años, el cual es el valor usado por la Lista Roja de la UICN para la valoración de especies con tiempos generacionales cortos. Para estas especies, nuestras estimaciones de duración por generación informados por características sugieren que diez años es un valor preventivo sólido para la valoración de amenazas. Para otros casos, sin embargo, como familias o géneros enteros o especies individuales, la duración generacional tuvo un impacto sustancial sobre su riesgo de extinción estimado, resultando así en un riesgo de extinción más elevado para las especies con mayor longevidad que aquellas especies con una menor longevidad. Aunque nuestra estrategia lidió efectivamente con los vacíos en los datos, la duración generacional para algunas especies podría estar subestimada debido a la escasez de datos de historia de vida. En general, nuestros resultados fortalecerán las futuras valoraciones de extinción de riesgo y aumentarán las bases de datos importantes de la historia de vida de las aves y los datos de características.


Subject(s)
Endangered Species , Extinction, Biological , Animals , Birds , Conservation of Natural Resources , Humans , Risk Assessment
9.
PLoS One ; 14(3): e0212128, 2019.
Article in English | MEDLINE | ID: mdl-30917126

ABSTRACT

Invasive alien species are a major threat to native insular species. Eradicating invasive mammals from islands is a feasible and proven approach to prevent biodiversity loss. We developed a conceptual framework to identify globally important islands for invasive mammal eradications to prevent imminent extinctions of highly threatened species using biogeographic and technical factors, plus a novel approach to consider socio-political feasibility. We applied this framework using a comprehensive dataset describing the distribution of 1,184 highly threatened native vertebrate species (i.e. those listed as Critically Endangered or Endangered on the IUCN Red List) and 184 non-native mammals on 1,279 islands worldwide. Based on extinction risk, irreplaceability, severity of impact from invasive species, and technical feasibility of eradication, we identified and ranked 292 of the most important islands where eradicating invasive mammals would benefit highly threatened vertebrates. When socio-political feasibility was considered, we identified 169 of these islands where eradication planning or operation could be initiated by 2020 or 2030 and would improve the survival prospects of 9.4% of the Earth's most highly threatened terrestrial insular vertebrates (111 of 1,184 species). Of these, 107 islands were in 34 countries and territories and could have eradication projects initiated by 2020. Concentrating efforts to eradicate invasive mammals on these 107 islands would benefit 151 populations of 80 highly threatened vertebrates and make a major contribution towards achieving global conservation targets adopted by the world's nations.


Subject(s)
Conservation of Natural Resources/methods , Introduced Species/trends , Animals , Biodiversity , Endangered Species , Extinction, Biological , Islands , Mammals
10.
Glob Chang Biol ; 22(2): 530-43, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26486804

ABSTRACT

Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader foundation for attributing species responses to global change may be achieved by complementing an attributes-based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we investigate the recent impact of multiple environmental changes on European farmland birds, here focusing on climate change and land use change. We analyze more than 800 time series from 18 countries spanning the past two decades. Analysis of long-term population growth rates documents simultaneous responses that can be attributed to both climate change and land-use change, including long-term increases in populations of hot-dwelling species and declines in long-distance migrants and farmland specialists. In contrast, analysis of annual growth rates yield novel insights into the potential mechanisms driving long-term climate induced change. In particular, we find that birds are affected by winter, spring, and summer conditions depending on the distinct breeding phenology that corresponds to their migratory strategy. Birds in general benefit from higher temperatures or higher primary productivity early on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach will be of general use when high-resolution time series are available in large-scale biodiversity surveys.


Subject(s)
Biodiversity , Birds , Climate Change , Models, Theoretical , Agriculture , Animal Migration , Animals , Diet , Europe , Population Density , Reproduction , Seasons
11.
PLoS One ; 9(5): e97217, 2014.
Article in English | MEDLINE | ID: mdl-24819734

ABSTRACT

Concern that European forest biodiversity is depleted and declining has provoked widespread efforts to improve management practices. To gauge the success of these actions, appropriate monitoring of forest ecosystems is paramount. Multi-species indicators are frequently used to assess the state of biodiversity and its response to implemented management, but generally applicable and objective methodologies for species' selection are lacking. Here we use a niche-based approach, underpinned by coarse quantification of species' resource use, to objectively select species for inclusion in a pan-European forest bird indicator. We identify both the minimum number of species required to deliver full resource coverage and the most sensitive species' combination, and explore the trade-off between two key characteristics, sensitivity and redundancy, associated with indicators comprising different numbers of species. We compare our indicator to an existing forest bird indicator selected on the basis of expert opinion and show it is more representative of the wider community. We also present alternative indicators for regional and forest type specific monitoring and show that species' choice can have a significant impact on the indicator and consequent projections about the state of the biodiversity it represents. Furthermore, by comparing indicator sets drawn from currently monitored species and the full forest bird community, we identify gaps in the coverage of the current monitoring scheme. We believe that adopting this niche-based framework for species' selection supports the objective development of multi-species indicators and that it has good potential to be extended to a range of habitats and taxa.


Subject(s)
Biodiversity , Birds , Forests , Statistics as Topic/methods , Animals , Conservation of Natural Resources , Europe
12.
PLoS One ; 8(5): e64552, 2013.
Article in English | MEDLINE | ID: mdl-23704997

ABSTRACT

The ecological impacts of changing forest management practices in Europe are poorly understood despite European forests being highly managed. Furthermore, the effects of potential drivers of forest biodiversity decline are rarely considered in concert, thus limiting effective conservation or sustainable forest management. We present a trait-based framework that we use to assess the detrimental impact of multiple land-use and management changes in forests on bird populations across Europe. Major changes to forest habitats occurring in recent decades, and their impact on resource availability for birds were identified. Risk associated with these changes for 52 species of forest birds, defined as the proportion of each species' key resources detrimentally affected through changes in abundance and/or availability, was quantified and compared to their pan-European population growth rates between 1980 and 2009. Relationships between risk and population growth were found to be significantly negative, indicating that resource loss in European forests is an important driver of decline for both resident and migrant birds. Our results demonstrate that coarse quantification of resource use and ecological change can be valuable in understanding causes of biodiversity decline, and thus in informing conservation strategy and policy. Such an approach has good potential to be extended for predictive use in assessing the impact of possible future changes to forest management and to develop more precise indicators of forest health.


Subject(s)
Birds/growth & development , Conservation of Natural Resources , Environment , Trees/physiology , Animals , Ecosystem , Europe , Models, Biological , Risk Assessment , Species Specificity
13.
Philos Trans R Soc Lond B Biol Sci ; 368(1610): 20120091, 2013 Jan 19.
Article in English | MEDLINE | ID: mdl-23209172

ABSTRACT

Predicting how and when adaptive evolution might rescue species from global change, and integrating this process into tools of biodiversity forecasting, has now become an urgent task. Here, we explored whether recent population trends of species can be explained by their past rate of niche evolution, which can be inferred from increasingly available phylogenetic and niche data. We examined the assemblage of 409 European bird species for which estimates of demographic trends between 1970 and 2000 are available, along with a species-level phylogeny and data on climatic, habitat and trophic niches. We found that species' proneness to demographic decline is associated with slow evolution of the habitat niche in the past, in addition to certain current-day life-history and ecological traits. A similar result was found at a higher taxonomic level, where families prone to decline have had a history of slower evolution of climatic and habitat niches. Our results support the view that niche conservatism can prevent some species from coping with environmental change. Thus, linking patterns of past niche evolution and contemporary species dynamics for large species samples may provide insights into how niche evolution may rescue certain lineages in the face of global change.


Subject(s)
Biological Evolution , Birds/physiology , Ecosystem , Animal Migration/physiology , Animals , Birds/classification , Body Weight , Climate , Conservation of Natural Resources/methods , Forecasting , Markov Chains , Phylogeny , Population Density , Species Specificity , Time Factors
14.
PLoS One ; 7(3): e32529, 2012.
Article in English | MEDLINE | ID: mdl-22457717

ABSTRACT

Protected areas (PAs) are a cornerstone of conservation efforts and now cover nearly 13% of the world's land surface, with the world's governments committed to expand this to 17%. However, as biodiversity continues to decline, the effectiveness of PAs in reducing the extinction risk of species remains largely untested. We analyzed PA coverage and trends in species' extinction risk at globally significant sites for conserving birds (10,993 Important Bird Areas, IBAs) and highly threatened vertebrates and conifers (588 Alliance for Zero Extinction sites, AZEs) (referred to collectively hereafter as 'important sites'). Species occurring in important sites with greater PA coverage experienced smaller increases in extinction risk over recent decades: the increase was half as large for bird species with>50% of the IBAs at which they occur completely covered by PAs, and a third lower for birds, mammals and amphibians restricted to protected AZEs (compared with unprotected or partially protected sites). Globally, half of the important sites for biodiversity conservation remain unprotected (49% of IBAs, 51% of AZEs). While PA coverage of important sites has increased over time, the proportion of PA area covering important sites, as opposed to less important land, has declined (by 0.45-1.14% annually since 1950 for IBAs and 0.79-1.49% annually for AZEs). Thus, while appropriately located PAs may slow the rate at which species are driven towards extinction, recent PA network expansion has under-represented important sites. We conclude that better targeted expansion of PA networks would help to improve biodiversity trends.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals , Extinction, Biological , Plants/classification
15.
Science ; 330(6010): 1503-9, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-20978281

ABSTRACT

Using data for 25,780 species categorized on the International Union for Conservation of Nature Red List, we present an assessment of the status of the world's vertebrates. One-fifth of species are classified as Threatened, and we show that this figure is increasing: On average, 52 species of mammals, birds, and amphibians move one category closer to extinction each year. However, this overall pattern conceals the impact of conservation successes, and we show that the rate of deterioration would have been at least one-fifth again as much in the absence of these. Nonetheless, current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups: agricultural expansion, logging, overexploitation, and invasive alien species.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Vertebrates , Amphibians , Animals , Birds , Endangered Species/statistics & numerical data , Endangered Species/trends , Extinction, Biological , Introduced Species , Mammals , Population Dynamics
16.
Ambio ; 37(6): 401-7, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18833791

ABSTRACT

To conserve biodiversity efficiently, an international framework is needed to ensure that national priorities take into account regional and global priorities. BirdLife International has published five comprehensive assessments of the global status of the world's birds and two evaluations of the status of Europe's birds at a continental level. This paper analyzes the results of these assessments in relation to Europe's 56 species of raptors and owls, 18% of which are of global conservation concern, and 64% of which have an unfavorable conservation status in Europe. The European Union (EU) holds half of the total estimated European breeding population of raptors and owls, and European Russia supports another third, but every European country has a responsibility for at least two species of European conservation concern. During the 1990s, more raptors increased than decreased in most EU member states, but the opposite was true in eastern Europe, where many of the most threatened species are concentrated. Given the popularity of these species with the public, and the political commitment to halt the loss of biodiversity by 2010, much more action is needed to monitor and conserve birds of prey.


Subject(s)
Conservation of Natural Resources , Environmental Monitoring/methods , Raptors/growth & development , Animals , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Conservation of Natural Resources/trends , Environmental Monitoring/legislation & jurisprudence , Europe , Population Dynamics , Strigiformes/growth & development
17.
Science ; 317(5839): 810-3, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17690296

ABSTRACT

Conservation of the planet's biodiversity will depend on international policy intervention, yet evidence-based assessment of the success of such intervention is lacking. Poor understanding of the effectiveness of international policy instruments exposes them to criticism or abandonment and reduces opportunities to improve them. Comparative analyses of population trends provide strong evidence for a positive impact of one such instrument, the European Union's Birds Directive, and we identify positive associations between the rate of provision of certain conservation measures through the directive and the response of bird populations. The results suggest that supranational conservation policy can bring measurable conservation benefits, although future assessments will require the setting of quantitative objectives and an increase in the availability of data from monitoring schemes.


Subject(s)
Animals, Wild , Biodiversity , Birds , Conservation of Natural Resources , International Cooperation , Animals , Conservation of Natural Resources/legislation & jurisprudence , Ecosystem , Europe , European Union , Population Dynamics , Public Policy
18.
J Anim Ecol ; 75(3): 826-35, 2006 May.
Article in English | MEDLINE | ID: mdl-16689964

ABSTRACT

1. Climate change is already affecting biodiversity, but the number of species for which reliable models relate weather and climate to demographic parameters is low. 2. We modelled the effect of temperature and rainfall on the breeding success and territory occupancy of ring ouzels Turdus torquatus (L.) in northern Britain, using data from a range of study areas, including one where there was a long-term decline in ring ouzel abundance. 3. Timing of breeding was significantly related to meteorological variables affecting birds in the early spring, though there was no evidence that laying dates had advanced. Breeding success was not significantly related to weather variables; instead, over 90% of annual variation in this parameter could be explained by density dependence. 4. Annual change in territory occupancy was linked to rainfall and temperature the preceding summer, after the main breeding season and to rainfall in the wintering grounds 24 months previously, coincident with the period of juniper Juniperus sp. (L.) flowering. High temperature in late summer, intermediate levels of late summer rainfall, and high spring rainfall in Morocco 24 months previously all had negative impacts on territory occupancy the following year. 5. All three weather variables have changed over recent decades, with a significant increase in summer temperature, a significant decrease in summer rainfall, and a nonsignificant decline in Moroccan spring rainfall. A model based on these trends alone predicted an annual decline in occupancy of 3.6% (compared with an observed decline of 1.2%), and suggested that increased summer temperatures may underlie declines in the British ring ouzel population. 6. Changes in summer temperature after the main breeding period could affect the survival rates of adult and/or juvenile birds. An improved understanding of the post-breeding ecology of ring ouzels is required to elucidate the mechanisms and causes of this relationship. Such knowledge might allow management aimed at buffering the impacts of climate change on ring ouzels.


Subject(s)
Animal Migration , Climate , Passeriformes/physiology , Reproduction/physiology , Sexual Behavior, Animal/physiology , Animals , Biodiversity , Female , Male , Population Density , Population Dynamics , Rain , Temperature , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...