Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
J Inherit Metab Dis ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563533

ABSTRACT

The current German newborn screening (NBS) panel includes 13 inherited metabolic diseases (IMDs). In addition, a NBS pilot study in Southwest Germany identifies individuals with propionic acidemia (PA), methylmalonic acidemia (MMA), combined and isolated remethylation disorders (e.g., cobalamin [cbl] C and methylenetetrahydrofolate reductase [MTHFR] deficiency), cystathionine ß-synthase (CBS) deficiency, and neonatal cbl deficiency through one multiple-tier algorithm. The long-term health benefits of screened individuals are evaluated in a multicenter observational study. Twenty seven screened individuals with IMDs (PA [N = 13], MMA [N = 6], cblC deficiency [N = 5], MTHFR deficiency [N = 2] and CBS deficiency [N = 1]), and 42 with neonatal cbl deficiency were followed for a median of 3.6 years. Seventeen screened IMD patients (63%) experienced at least one metabolic decompensation, 14 of them neonatally and six even before the NBS report (PA, cbl-nonresponsive MMA). Three PA patients died despite NBS and immediate treatment. Fifteen individuals (79%) with PA or MMA and all with cblC deficiency developed permanent, mostly neurological symptoms, while individuals with MTHFR, CBS, and neonatal cbl deficiency had a favorable clinical outcome. Utilizing a combined multiple-tier algorithm, we demonstrate that NBS and specialized metabolic care result in substantial benefits for individuals with MTHFR deficiency, CBS deficiency, neonatal cbl deficiency, and to some extent, cbl-responsive MMA and cblC deficiency. However, its advantage is less evident for individuals with PA and cbl-nonresponsive MMA. SYNOPSIS: Early detection through newborn screening and subsequent specialized metabolic care improve clinical outcomes and survival in individuals with MTHFR deficiency and cystathionine-ß-synthase deficiency, and to some extent in cobalamin-responsive methylmalonic acidemia (MMA) and cblC deficiency while the benefit for individuals with propionic acidemia and cobalamin-nonresponsive MMA is less evident due to the high (neonatal) decompensation rate, mortality, and long-term complications.

2.
Pediatr Rheumatol Online J ; 22(1): 28, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395977

ABSTRACT

BACKGROUND: A structured transition of adolescents and young adults with chronic autoinflammatory and autoimmune disorders from the pediatric to the adult health care system is important. To date, data on the time, processes, outcome, resources required for the necessary components of the transition process and the associated costs are lacking. METHODS: Evaluation of resource use and costs in a prospective cohort study of 58 adolescents with chronic autoinflammatory and autoimmune disorders, for the key elements of a structured transition pathway including (i) compilation of a summary of patient history, (ii) assessment of patients' disease-related knowledge and needs, (iii) required education and counseling sessions, (iv) and a transfer appointment of the patient with the current pediatric and the future adult rheumatologist. RESULTS: Forty-nine of 58 enrolled patients (84.5%) completed the transition pathway and were transferred to adult care. The mean time from the decision to start the transition process to the final transfer consultation was 315 ± 147 days. Transfer consultations were performed in 49 patients, including 10 patients jointly with the future adult rheumatologist. Most consultations were performed by the multidisciplinary team with a median of three team members and lasted 65.5 ± 21.3 min. The cumulative cost of all consultation and education sessions performed including the transfer appointment was 283 ± 164 Euro per patient. In addition, the cost of coordinating the transition process was 57.3 ± 15.4 Euro. CONCLUSIONS: A structured transition pathway for patients with chronic autoinflammatory and autoimmune disorders is resource and time consuming and should be adequately funded.


Subject(s)
Autoimmune Diseases , Transition to Adult Care , Adolescent , Young Adult , Humans , Child , Prospective Studies , Autoimmune Diseases/therapy , Rheumatologists
3.
Orphanet J Rare Dis ; 18(1): 93, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37098531

ABSTRACT

PURPOSE: The transition process from paediatric/adolescent to adult medical care settings is of utmost importance for the future health of adolescents with chronic diseases and poses even more difficulties in the context of rare diseases (RDs). Paediatric care teams are challenged to deliver adolescent-appropriate information and structures. Here we present a structured transition pathway which is patient-focused and adoptable for different RDs. METHODS: The transition pathway for adolescents 16 years and older was developed and implemented as part of a multi-centre study in 10 university hospitals in Germany. Key elements of the pathway included: assessment of patients' disease-related knowledge and needs, training/educational and counselling sessions, a structured epicrisis and a transfer appointment jointly with the paediatric and adult specialist. Specific care coordinators from the participating university hospitals were in charge of organization and coordination of the transition process. RESULTS: Of a total of 292 patients, 286 completed the pathway. Deficits in disease-specific knowledge were present in more than 90% of participants. A need for genetic or socio-legal counselling was indicated by > 60%. A mean of 2.1 training sessions per patient were provided over a period of almost 1 year, followed by the transfer to adult care in 267 cases. Twelve patients remained in paediatric care as no adult health care specialist could be identified. Targeted training and counselling resulted in improved disease-specific knowledge and contributed to empowering of patients. CONCLUSION: The described transition pathway succeeds to improve health literacy in adolescents with RDs and can be implemented by paediatric care teams in any RD specialty. Patient empowerment was mainly achieved by individualized training and counselling.


Subject(s)
Patient Participation , Rare Diseases , Humans , Adolescent , Child , Chronic Disease , Germany
4.
J Inherit Metab Dis ; 46(3): 482-519, 2023 05.
Article in English | MEDLINE | ID: mdl-36221165

ABSTRACT

Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Humans , Glutaryl-CoA Dehydrogenase , Lysine/metabolism , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/therapy , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Glutarates/metabolism
5.
J Inherit Metab Dis ; 45(6): 1070-1081, 2022 11.
Article in English | MEDLINE | ID: mdl-36054426

ABSTRACT

To prevent maternal phenylketonuria (PKU) syndrome low phenylalanine concentrations (target range, 120-360 µmol/L) during pregnancy are recommended for women with PKU. We evaluated the feasibility and effectiveness of current recommendations and identified factors influencing maternal metabolic control and children's outcome. Retrospective study of first successfully completed pregnancies of 85 women with PKU from 12 German centers using historical data and interviews with the women. Children's outcome was evaluated by standardized IQ tests and parental rating of child behavior. Seventy-four percent (63/85) of women started treatment before conception, 64% (54/85) reached the phenylalanine target range before conception. Pregnancy planning resulted in earlier achievement of the phenylalanine target (18 weeks before conception planned vs. 11 weeks of gestation unplanned, p < 0.001) and lower plasma phenylalanine concentrations during pregnancy, particularly in the first trimester (0-7 weeks of gestation: 247 µmol/L planned vs. 467 µmol/L unplanned, p < 0.0001; 8-12 weeks of gestation: 235 µmol/L planned vs. 414 µmol/L unplanned, p < 0.001). Preconceptual dietary training increased the success rate of achieving the phenylalanine target before conception compared to women without training (19 weeks before conception vs. 9 weeks of gestation, p < 0.001). The majority (93%) of children had normal IQ (mean 103, median age 7.3 years); however, IQ decreased with increasing phenylalanine concentration during pregnancy. Good metabolic control during pregnancy is the prerequisite to prevent maternal PKU syndrome in the offspring. This can be achieved by timely provision of detailed information, preconceptual dietary training, and careful planning of pregnancy.


Subject(s)
Phenylketonuria, Maternal , Phenylketonurias , Pregnancy , Child , Female , Humans , Retrospective Studies , Phenylketonuria, Maternal/therapy , Phenylalanine , Diet , Child Behavior , Syndrome , Pregnancy Outcome
6.
Orphanet J Rare Dis ; 16(1): 474, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34772435

ABSTRACT

BACKGROUND: Diagnosis, treatment, and care of patients with rare diseases require multidisciplinary cooperation between medical and paramedical specialities and with patients and families. Innovative genetic diagnostics, whole exome and whole genome sequencing (WES, WGS) has enlarged the diagnostic toolkit but also increased the complexity of the endeavour. Structured multidisciplinary clinical pathways (CPW) can guide diagnosis, treatment, and care of patients with rare diseases, link scientific evidence to clinical practice and optimise clinical outcomes whilst maximising clinical efficiency. RESULTS: In contrast to the common approach of appending disease-specific CPWs to disease-specific guidelines, we suggest a generic CPW manoeuvring the patient along the way of finding the correct diagnosis by applying the best diagnostic strategy into an appropriate system of treatment and care. Available guidelines can be integrated into the generic CPW in the course of its application. The approach also applies to situations where a diagnosis remains unsolved. The backbone of the generic CPW is a set of multidisciplinary structured case conferences projecting and evaluating diagnostic and/or therapeutic steps, enforcing to integrate best scientific evidence with clinical experience. The generic CPW is stated as a flowchart and a checklist which can be used to record and document parsimoniously the structure, process and results of a patient's pathway, but also as a data model for research. It was applied in a multicentre setting with 587 cases each with a presumptive diagnosis of a rare disease. In 369 cases (62.8%) a diagnosis could be confirmed, and multidisciplinary treatment and/or care was initiated. The median process time from first contact until confirmation of diagnosis by WES was 109 days and much shorter than diagnostic delays reported in the literature. Application of the CPW is illustrated by two case reports. CONCLUSIONS: Our model is a tool to change the diagnostic odyssey into an organised and trackable route. It can also be used to inform patients and families about the stages of their individual route, to update health care providers only partially involved or attending specialised treatment and care, like the patient's or family's primary physician, and finally to train novices in the field.


Subject(s)
Critical Pathways , Rare Diseases , Exome , Humans , Rare Diseases/diagnosis , Exome Sequencing
7.
Metabolites ; 11(10)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34677395

ABSTRACT

Monitoring phenylalanine (Phe) concentrations is critical for the management of phenylketonuria (PKU). This can be done in dried blood spots (DBS) or in EDTA plasma derived from capillary or venous blood. Different techniques are used to measure Phe, the most common being flow-injection analysis tandem mass spectrometry (FIA-MS-MS) and ion exchange chromatography (IEC). Significant differences have been reported between Phe concentrations in various sample types measured by different techniques, the cause of which is not yet understood. We measured Phe concentrations in 240 venous blood samples from 199 patients with hyperphenylalaninemia in dried blood spots, EDTA plasma and erythrocytes by FIA-MS-MS and IEC. Phe concentrations were significantly lower in erythrocytes than in plasma leading to about 19% lower Phe DBS concentrations compared with plasma independent from the method used for quantification. As most therapy recommendations for PKU patients are based on plasma concentrations reliable conversion of DBS into plasma concentrations is necessary. Variances of Phe concentrations in plasma and DBS are not linear but increases with higher concentrations indicating heteroscedasticity. We therefore suggest the slope of the 75th percentile from quantile regression as a correction factor.

8.
Orphanet J Rare Dis ; 16(1): 371, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34479584

ABSTRACT

BACKGROUND: Glycogen storage disease type I (GSD I) is a rare autosomal recessive disorder of carbohydate metabolism characterized by recurrent hypoglycaemia and hepatomegaly. Management of GSD I is demanding and comprises a diet with defined carbohydrate intake and the use of complex carbohydrates, nocturnal tube feeding or night-time uncooked cornstarch intake, regular blood glucose monitoring and the handling of emergency situations. With improved treatment, most patients nowadays survive into adulthood. Little research has been performed on the impact of GSD I on daily life, especially in adult patients. RESULTS: In this multi-centre study we assessed the impact of GSD I on adult daily life in 34 GSD I patients (27 GSD Ia, 7 GSD Ib) between 17 and 54 years (median 26 years) using a self-designed questionnaire that specifically focused on different aspects of daily life, such as job situation, social life, sports, travelling, composition of the household, night-time and day-time dietary management and disease monitoring as well as the patient's attitude towards the disease. At the time of investigation, the majority of patients either attended school or university or were employed, while 3 patients (9%) were out of work. Most patients ranked GSD I as a disease with moderate severity and disease burden. Dietary treatment was considered challenging by many, but the vast majority of patients considered life with GSD I as well-manageable. CONCLUSIONS: Although the management of GSD I poses a significant burden on daily life, most patients live an independent adult life, have a positive attitude towards their disease and seem to cope well with their situation.


Subject(s)
Glycogen Storage Disease Type I , Glycogen Storage Disease , Hypoglycemia , Adult , Blood Glucose , Blood Glucose Self-Monitoring , Humans , Surveys and Questionnaires
9.
J Mother Child ; 24(2): 65-72, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33179604

ABSTRACT

BACKGROUND: Diagnosis, treatment, and care of inborn errors of metabolism require well organized interdisciplinary teams. Holistic approaches comprise the system of all elements and relations between elements necessary for an optimal function of the system. METHODS: Following the rule "structure follows function" based on scientific, academic, and clinical experience the elements of the system providing diagnosis, treatment, and care for inborn errors of metabolism are defined and described. RESULTS: A holistic approach to inborn errors of metabolism comprising 10 elements is suggested, established, and controlled by an interdisciplinary metabolic team organized as a disease, and a case management program based on evidence-based guidelines is suggested. Quality assurance and quality control will not only improve the treatment of the individual but also the health system. CONCLUSION: The holistic approach is a joint project of the team of health care professionals and the person with a condition, allowing them to see the patient's individual medical, behavioral, social, legal, and economic context. For practical, technical, and economic reasons this will only be possible in centers caring for a critical number of individuals.


Subject(s)
Family/psychology , Holistic Health , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/psychology , Metabolism, Inborn Errors/therapy , Patients/psychology , Stress, Psychological/therapy , Adult , Delivery of Health Care, Integrated/methods , Female , Humans , Infant , Infant, Newborn , Male
10.
Pediatrics ; 146(5)2020 11.
Article in English | MEDLINE | ID: mdl-33051224

ABSTRACT

BACKGROUND: Although extended newborn screening (NBS) programs have been introduced more than 20 years ago, their impact on the long-term clinical outcome of individuals with inherited metabolic diseases (IMDs) is still rarely investigated. METHODS: We studied the clinical outcomes of individuals with IMDs identified by NBS between 1999 and 2016 in a prospective multicenter observational study. RESULTS: In total, 306 screened individuals with IMDs (115 with phenylketonuria and 191 with other IMDs with a lifelong risk for metabolic decompensation) were followed for a median time of 6.2 years. Although the risk for metabolic decompensation was disease-specific and NBS could not prevent decompensations in every individual at risk (n = 49), the majority did not develop permanent disease-specific signs (75.9%), showed normal development (95.6%) and normal cognitive outcome (87.7%; mean IQ: 100.4), and mostly attended regular kindergarten (95.2%) and primary school (95.2%). This demonstrates that not only individuals with phenylketonuria, serving as a benchmark, but also those with lifelong risk for metabolic decompensation had a favorable long-term outcome. High NBS process quality is the prerequisite of this favorable outcome. This is supported by 28 individuals presenting with first symptoms at a median age of 3.5 days before NBS results were available, by the absence of neonatal decompensations after the report of NBS results, and by the challenge of keeping relevant process parameters at a constantly high level. CONCLUSIONS: NBS for IMDs, although not completely preventing clinical presentations in all individuals, can be considered a highly successful program of secondary prevention.


Subject(s)
Metabolic Diseases/diagnosis , Neonatal Screening , Female , Humans , Infant, Newborn , Male , Metabolic Diseases/complications , Phenylketonurias/diagnosis , Prospective Studies , Time Factors
11.
Ann Neurol ; 86(1): 116-128, 2019 07.
Article in English | MEDLINE | ID: mdl-31018246

ABSTRACT

OBJECTIVE: Individuals with urea cycle disorders (UCDs) often present with intellectual and developmental disabilities. The major aim of this study was to evaluate the impact of diagnostic and therapeutic interventions on cognitive outcomes in UCDs. METHODS: This prospective, observational, multicenter study includes data from 503 individuals with UCDs who had comprehensive neurocognitive testing with a cumulative follow-up of 702 patient-years. RESULTS: The mean cognitive standard deviation score (cSDS) was lower in symptomatic than in asymptomatic (p < 0.001, t test) individuals with UCDs. Intellectual disability (intellectual quotient < 70, cSDS < -2.0) was associated with the respective subtype of UCD and early disease onset, whereas height of the initial peak plasma ammonium concentration was inversely associated with neurocognitive outcomes in mitochondrial (proximal) rather than cytosolic (distal) UCDs. In ornithine transcarbamylase and argininosuccinate synthetase 1 deficiencies, we did not find evidence that monoscavenger therapy with sodium or glycerol phenylbutyrate was superior to sodium benzoate in providing cognitive protection. Early liver transplantation appears to be beneficial for UCDs. It is noteworthy that individuals with argininosuccinate synthetase 1 and argininosuccinate lyase deficiencies identified by newborn screening had better neurocognitive outcomes than those diagnosed after the manifestation of first symptoms. INTERPRETATION: Cognitive function is related to interventional and non-interventional variables. Early detection by newborn screening and early liver transplantation appear to offer greater cognitive protection, but none of the currently used nitrogen scavengers was superior with regard to long-term neurocognitive outcome. Further confirmation could determine these variables as important clinical indicators of neuroprotection for individuals with UCDs. ANN NEUROL 2019.


Subject(s)
Cognition/physiology , Mental Status and Dementia Tests , Urea Cycle Disorders, Inborn/diagnosis , Urea Cycle Disorders, Inborn/therapy , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Female , Follow-Up Studies , Glycerol/analogs & derivatives , Glycerol/pharmacology , Glycerol/therapeutic use , Humans , Infant , Infant, Newborn , Liver Transplantation/methods , Male , Neonatal Screening/methods , Phenylbutyrates/pharmacology , Phenylbutyrates/therapeutic use , Prospective Studies , Urea Cycle Disorders, Inborn/psychology , Young Adult
12.
Orphanet J Rare Dis ; 14(1): 80, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30961665

ABSTRACT

BACKGROUND: Neonatal manifestation of life-threatening hyperammonemic encephalopathy in urea cycle disorders (UCD) is often misdiagnosed as neonatal sepsis, resulting in significantly delayed start of specific treatment and poor outcome. The major aim of this study was to identify specific initial symptoms or signs to clinically distinguish hyperammonemic encephalopathy in neonates from neonatal sepsis in order to identify affected individuals with UCD and to start metabolic therapy without delay. Furthermore, we evaluated the impact of diagnostic delay, peak plasma ammonium (NH4+) concentration, mode of emergency treatment and transfer to a tertiary referral center on the outcome. METHODS: Detailed information of 17 patients (born between 1994 and 2012) with confirmed diagnosis of UCD and neonatal hyperammonemic encephalopathy were collected from the original medical records. RESULTS: The initially suspected diagnosis was neonatal sepsis in all patients, but was not confirmed in any of them. Unlike neonatal sepsis and not previously reported blood pressure increased above the 95th percentile in 13 (81%) of UCD patients before emergency treatment was started. Respiratory alkalosis was found in 11 (65%) of UCD patients, and in 14 (81%) plasma NH4+concentrations further increased despite initiation of metabolic therapy. CONCLUSION: Detection of high blood pressure could be a valuable parameter for distinguishing neonatal sepsis from neonatal manifestation of UCD. Since high blood pressure is not typical for neonatal sepsis, other reasons such as encephalopathy and especially hyperammonemic encephalopathy (caused by e.g. UCD) should be searched for immediately. However, our result that the majority of newborns with UCD initially present with high blood pressure has to be evaluated in larger patient cohorts.


Subject(s)
Brain Diseases/diagnosis , Hyperammonemia/diagnosis , Hypertension/diagnosis , Urea Cycle Disorders, Inborn/diagnosis , Alkalosis, Respiratory/diagnosis , Delayed Diagnosis , Female , Humans , Infant, Newborn , Male , Sepsis/diagnosis
13.
Mol Genet Metab ; 126(4): 397-405, 2019 04.
Article in English | MEDLINE | ID: mdl-30827756

ABSTRACT

BACKGROUND AND AIM: Patients with methylmalonic acidemia (MMA) and propionic acidemia (PA) and urea cycle disorders (UCD), treated with a protein restricted diet, are prone to growth failure. To obtain optimal growth and thereby efficacious protein incorporation, a diet containing the essential and functional amino acids for growth is necessary. Optimal growth will result in improved protein tolerance and possibly a decrease in the number of decompensations. It thus needs to be determined if amino acid deficiencies are associated with the growth retardation in these patient groups. We studied the correlations between plasma L-arginine levels, plasma branched chain amino acids (BCAA: L-isoleucine, L-leucine and L-valine) levels (amino acids known to influence growth), and height in MMA/PA and UCD patients. METHODS: We analyzed data from longitudinal visits made in stable metabolic periods by patients registered at the European Registry and Network for Intoxication Type Metabolic Diseases (E-IMD, Chafea no. 2010 12 01). RESULTS: In total, 263 MMA/PA and 311 UCD patients were included, all aged below 18 years of age. In patients with MMA and PA, height z-score was positively associated with patients' natural-protein-to-energy prescription ratio and their plasma L-valine and L-arginine levels, while negatively associated with the amount of synthetic protein prescription and their age at visit. In all UCDs combined, height z-score was positively associated with the natural-protein-to-energy prescription ratio. In those with carbamylphosphate synthetase 1 deficiency (CPS1-D), those with male ornithine transcarbamylase deficiency (OTC-D), and those in the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome subgroup, height z-score was positively associated with patients' plasma L-leucine levels. In those with argininosuccinate synthetase deficiency (ASS-D) and argininosuccinate lyase deficiency (ASL-D), height was positively associated with patients' plasma L-valine levels. CONCLUSION: Plasma L-arginine and L-valine levels in MMA/PA patients and plasma L-leucine and L-valine levels in UCD patients, as well as the protein-to-energy prescription ratio in both groups were positively associated with height. Optimization of these plasma amino acid levels is essential to support normal growth and increase protein tolerance in these disorders. Consequently this could improve the protein-to-energy intake ratio.


Subject(s)
Amino Acid Metabolism, Inborn Errors/complications , Amino Acids, Branched-Chain/blood , Arginine/blood , Growth Disorders/etiology , Propionic Acidemia/complications , Urea Cycle Disorders, Inborn/complications , Adolescent , Amino Acid Metabolism, Inborn Errors/diet therapy , Body Height , Child , Child, Preschool , Diet , Europe , Female , Growth Disorders/diet therapy , Humans , Longitudinal Studies , Male , Registries
14.
J Inherit Metab Dis ; 42(6): 1162-1175, 2019 11.
Article in English | MEDLINE | ID: mdl-30734935

ABSTRACT

Organic acidurias (OAD) and urea-cycle disorders (UCD) are rare inherited disorders affecting amino acid and protein metabolism. As dietary practice varies widely, we assessed their long-term prescribed dietary treatment against published guideline and studied plasma amino acids levels. We analyzed data from the first visit recorded in the European registry and network for intoxication type metabolic diseases (E-IMD, Chafea no. 2010 12 01). In total, 271 methylmalonic aciduria (MMA) and propionic aciduria (PA) and 361 UCD patients were included. Median natural protein prescription was consistent with the recommended daily allowance (RDA), plasma L-valine (57%), and L-isoleucine (55%) levels in MMA and PA lay below reference ranges. Plasma levels were particularly low in patients who received amino acid mixtures (AAMs-OAD) and L-isoleucine:L-leucine:L-valine (BCAA) ratio was 1.0:3.0:3.2. In UCD patients, plasma L-valine, L-isoleucine, and L-leucine levels lay below reference ranges in 18%, 30%, and 31%, respectively. In symptomatic UCD patients who received AAM-UCD, the median natural protein prescription lay below RDA, while their L-valine and L-isoleucine levels and plasma BCAA ratios were comparable to those in patients who did not receive AAM-UCD. Notably, in patients with ornithine transcarbamylase syndrome (OTC-D), carbamylphosphate synthetase 1 syndrome (CPS1-D) and hyperammonemia-hyperornithinemia-homocitrullinemia (HHH) syndrome selective L-citrulline supplementation resulted in higher plasma L-arginine levels than selective L-arginine supplementation. In conclusion, while MMA and PA patients who received AAMs-OAD had very low BCAA levels and disturbed plasma BCAA ratios, AAMs-UCD seemed to help UCD patients obtain normal BCAA levels. In patients with OTC-D, CPS1-D, and HHH syndrome, selective L-citrulline seemed preferable to selective L-arginine supplementation.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diet therapy , Amino Acids/administration & dosage , Dietary Supplements , Propionic Acidemia/diet therapy , Urea Cycle Disorders, Inborn/diet therapy , Adolescent , Adult , Amino Acid Metabolism, Inborn Errors/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Europe/epidemiology , Feasibility Studies , Female , Humans , Hyperammonemia/diet therapy , Hyperammonemia/epidemiology , Infant , Male , Ornithine/deficiency , Propionic Acidemia/epidemiology , Registries , Retrospective Studies , Treatment Outcome , Urea Cycle Disorders, Inborn/epidemiology , Young Adult
15.
J Inherit Metab Dis ; 42(3): 398-406, 2019 05.
Article in English | MEDLINE | ID: mdl-30706953

ABSTRACT

Biogenic amines synthesis in phenylketonuria (PKU) patients with high phenylalanine (Phe) concentration is thought to be impaired due to inhibition of tyrosine and tryptophan hydroxylases and competition with amino acids at the blood-brain barrier. Dopamine and serotonin deficits might explain brain damage and progressive neuropsychiatric impairment in adult PKU patients. Ten early treated adult PKU patients (mean age 38.2 years) and 15 age-matched controls entered the study. Plasma and cerebrospinal fluid (CSF) Phe, 5-hydroxyindoleacetic acid (5-HIAA), 5-hydroxytryptophan (5-HTP), 3,4-dihydroxy-l-phenylalanine (l-DOPA) and homovanillic acid (HVA) were analyzed. Voxel-based morphometry statistical nonparametric mapping was used to test the age-corrected correlation between gray matter atrophy and CSF biogenic amines levels. 5-HIAA and 5-HTP were significantly reduced in PKU patients compared to controls. Significant negative correlations were found between CSF 5-HIAA, HVA, and 5-HTP and Phe levels. A decrease in 5-HIAA and 5-HTP concentrations correlated with precuneus and frontal atrophy, respectively. Lower HVA levels correlated with occipital atrophy. Biogenic amines deficits correlate with specific brain atrophy patterns in adult PKU patients, in line with serotonin and dopamine projections. These findings may support a more rigorous Phe control in adult PKU to prevent neurotransmitter depletion and accelerated brain damage due to aging.


Subject(s)
Biogenic Amines/cerebrospinal fluid , Gray Matter/pathology , Homovanillic Acid/cerebrospinal fluid , Phenylketonurias/cerebrospinal fluid , Adult , Atrophy , Biogenic Amines/blood , Case-Control Studies , Female , Homovanillic Acid/blood , Humans , Linear Models , Magnetic Resonance Imaging , Male , Middle Aged , Phenylketonurias/blood
17.
J Inherit Metab Dis ; 42(1): 93-106, 2019 01.
Article in English | MEDLINE | ID: mdl-30740724

ABSTRACT

BACKGROUND: To improve our understanding of urea cycle disorders (UCDs) prospectively followed by two North American (NA) and European (EU) patient cohorts. AIMS: Description of the NA and EU patient samples and investigation of the prospects of combined and comparative analyses for individuals with UCDs. METHODS: Retrieval and comparison of the data from 1095 individuals (NA: 620, EU: 475) from two electronic databases. RESULTS: The proportion of females with ornithine transcarbamylase deficiency (fOTC-D), particularly those being asymptomatic (asfOTC-D), was higher in the NA than in the EU sample. Exclusion of asfOTC-D resulted in similar distributions in both samples. The mean age at first symptoms was higher in NA than in EU patients with late onset (LO), but similar for those with early (≤ 28 days) onset (EO) of symptoms. Also, the mean age at diagnosis and diagnostic delay for EO and LO patients were similar in the NA and EU cohorts. In most patients (including fOTC-D), diagnosis was made after the onset of symptoms (59.9%) or by high-risk family screening (24.7%), and less often by newborn screening (8.9%) and prenatal testing (3.7%). Analysis of clinical phenotypes revealed that EO patients presented with more symptoms than LO individuals, but that numbers of symptoms correlated with plasma ammonium concentrations in EO patients only. Liver transplantation was reported for 90 NA and 25 EU patients. CONCLUSIONS: Combined analysis of databases drawn from distinct populations opens the possibility to increase sample sizes for natural history questions, while comparative analysis utilizing differences in approach to treatment can evaluate therapeutic options and enhance long-term outcome studies.


Subject(s)
Urea Cycle Disorders, Inborn/diagnosis , Cohort Studies , Data Analysis , Delayed Diagnosis , Europe , Female , Humans , Infant, Newborn , Male , Neonatal Screening/methods , North America , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Ornithine Carbamoyltransferase Deficiency Disease/metabolism , Rare Diseases , Urea/metabolism , Urea Cycle Disorders, Inborn/metabolism
18.
J Inherit Metab Dis ; 42(2): 243-253, 2019 03.
Article in English | MEDLINE | ID: mdl-30671983

ABSTRACT

Beginning in 2006, the Urea Cycle Disorders Consortium (UCDC) has conducted a longitudinal study of eight inherited deficiencies of enzymes and transporters of the urea cycle, including 444 individuals with ornithine transcarbamylase deficiency (OTCD), of whom 300 (67 males, 233 females) received psychological evaluation. In a cross-sectional study (age range, 3-71 years), analysis of covariance (ANCOVA) determined the association between outcomes in five cognitive domains (global intelligence, executive functions, memory, visuomotor integration, visual perception) and sex, age at testing and timing of disease onset defined as early onset (≤28 days; EO), late onset (LO), or asymptomatic (AS). The dataset of 183 subjects with complete datasets (31 males, 152 females) revealed underrepresentation of EO subjects (2 males, 4 females), who were excluded from the ANCOVA. Although mean scores of LO and AS individuals were within 1 SD of the population norm, AS subjects attained significantly higher scores than LO subjects and males higher scores than females. Correlations between cognitive domains were high, particularly intelligence proved to be a distinguished indicator for cognitive functioning. Maximum plasma ammonium concentration and intelligence correlated significantly higher in EO (r = -0.47) than in LO subjects (r = 0.04). Correlation between the number of hyperammonemic events and intelligence scores were similar for EO (r = -0.30) and LO (r = -0.26) individuals. The number of clinical symptoms was significantly associated with intelligence (r = -0.28) but not with scores in other domains. Results suggest that OTCD has a global impact on cognitive functioning rather than a specific effect on distinct cognitive domains.


Subject(s)
Cognition , Hyperammonemia/complications , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Ornithine Carbamoyltransferase Deficiency Disease/psychology , Adolescent , Adult , Aged , Ammonium Compounds/blood , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Intelligence Tests , Longitudinal Studies , Male , Middle Aged , Young Adult
19.
Genet Med ; 21(3): 580-590, 2019 03.
Article in English | MEDLINE | ID: mdl-29997390

ABSTRACT

PURPOSE: The nature of phenylalanine hydroxylase (PAH) variants determines residual enzyme activity, which modifies the clinical phenotype in phenylketonuria (PKU). We exploited the statistical power of a large genotype database to determine the relationship between genotype and phenotype in PKU. METHODS: A total of 9336 PKU patients with 2589 different genotypes, carrying 588 variants, were investigated using an allelic phenotype value (APV) algorithm. RESULTS: We identified 251 0-variants encoding inactive PAH, and assigned APVs (0 = classic PKU; 5 = mild PKU; 10 = mild hyperphenylalaninaemia) to 88 variants in PAH-functional hemizygous patients. The genotypic phenotype values (GPVs) were set equal to the higher-APV allele, which was assumed to be dominant over the lower-APV allele and to determine the metabolic phenotype. GPVs for 8872 patients resulted in cut-off ranges of 0.0-2.7 for classic PKU, 2.8-6.6 for mild PKU and 6.7-10.0 for mild hyperphenylalaninaemia. Genotype-based phenotype prediction was 99.2% for classic PKU, 46.2% for mild PKU and 89.5% for mild hyperphenylalaninaemia. The relationships between known pretreatment blood phenylalanine levels and GPVs (n = 4217), as well as tetrahydrobiopterin responsiveness and GPVs (n = 3488), were significant (both P < 0.001). CONCLUSIONS: APV and GPV are powerful tools to investigate genotype-phenotype associations, and can be used for genetic counselling of PKU families.


Subject(s)
Genetic Association Studies/methods , Phenylalanine Hydroxylase/genetics , Phenylketonurias/genetics , Alleles , Female , Gene Frequency/genetics , Genotype , Humans , Male , Mutation , Phenotype , Phenylalanine Hydroxylase/physiology , Phenylketonurias/diagnosis
20.
Nutrients ; 10(12)2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30544518

ABSTRACT

Children with phenylketonuria (PKU) follow a protein restricted diet with negligible amounts of docosahexaenoic acid (DHA). Low DHA intakes might explain subtle neurological deficits in PKU. We studied whether a DHA supply modified plasma DHA and neurological and intellectual functioning in PKU. In a double-blind multicentric trial, 109 PKU patients were randomized to DHA doses from 0 to 7 mg/kg&day for six months. Before and after supplementation, we determined plasma fatty acid concentrations, latencies of visually evoked potentials, fine and gross motor behavior, and IQ. Fatty acid desaturase genotypes were also determined. DHA supplementation increased plasma glycerophospholipid DHA proportional to dose by 0.4% DHA per 1 mg intake/kg bodyweight. Functional outcomes were not associated with DHA status before and after intervention and remained unchanged by supplementation. Genotypes were associated with plasma arachidonic acid levels and, if considered together with the levels of the precursor alpha-linolenic acid, also with DHA. Functional outcomes and supplementation effects were not significantly associated with genotype. DHA intakes up to 7 mg/kg did not improve neurological functions in PKU children. Nervous tissues may be less prone to low DHA levels after infancy, or higher doses might be required to impact neurological functions. In situations of minimal dietary DHA, endogenous synthesis of DHA from alpha-linolenic acid could relevantly contribute to DHA status.


Subject(s)
Cognition/drug effects , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/therapeutic use , Motor Skills/drug effects , Phenylketonurias/drug therapy , Phenylketonurias/physiopathology , Adolescent , Child , Fatty Acid Desaturases/genetics , Female , Humans , Male , Phenylketonurias/epidemiology , Phenylketonurias/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...