Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 29(6): 1484-1500, 2023 03.
Article in English | MEDLINE | ID: mdl-36534408

ABSTRACT

Forests provide a wide variety of ecosystem services (ES) to society. The boreal biome is experiencing the highest rates of warming on the planet and increasing demand for forest products. To foresee how to maximize the adaptation of boreal forests to future warmer conditions and growing demands of forest products, we need a better understanding of the relative importance of forest management and climate change on the supply of ecosystem services. Here, using Finland as a boreal forest case study, we assessed the potential supply of a wide range of ES (timber, bilberry, cowberry, mushrooms, carbon storage, scenic beauty, species habitat availability and deadwood) given seven management regimes and four climate change scenarios. We used the forest simulator SIMO to project forest dynamics for 100 years into the future (2016-2116) and estimate the potential supply of each service using published models. Then, we tested the relative importance of management and climate change as drivers of the future supply of these services using generalized linear mixed models. Our results show that the effects of management on the future supply of these ES were, on average, 11 times higher than the effects of climate change across all services, but greatly differed among them (from 0.53 to 24 times higher for timber and cowberry, respectively). Notably, the importance of these drivers substantially differed among biogeographical zones within the boreal biome. The effects of climate change were 1.6 times higher in northern Finland than in southern Finland, whereas the effects of management were the opposite-they were three times higher in the south compared to the north. We conclude that new guidelines for adapting forests to global change should account for regional differences and the variation in the effects of climate change and management on different forest ES.


Subject(s)
Ecosystem , Taiga , Climate Change , Forests , Adaptation, Physiological , Trees
2.
Sustain Sci ; 16(4): 1397-1403, 2021.
Article in English | MEDLINE | ID: mdl-33841582

ABSTRACT

COVID-19 crisis has emphasized how poorly prepared humanity is to cope with global disasters. However, this crisis also offers a unique opportunity to move towards a more sustainable and equitable future. Here, we identify the underlying environmental, social, and economic chronic causes of the COVID-19 crisis. We argue in favour of a holistic view to initiate a socio-economic transition to improve the prospects for global sustainability and human well-being. Alternative approaches to "Business-As-Usual" for guiding the transition are already available for implementation. Yet, to ensure a successful and just transition, we need to change our priorities towards environmental integrity and well-being. This necessarily means environmental justice, a different worldview and a closer relationship with nature.

4.
Ambio ; 50(5): 990-1002, 2021 May.
Article in English | MEDLINE | ID: mdl-33438166

ABSTRACT

There is increasing recognition that diverse knowledge systems can work in mutually enriching ways and that Indigenous and Local Knowledge (ILK) can enhance biodiversity conservation. However, studies using scientific knowledge and ILK in a complementary manner, and acknowledging convergent and especially divergent insights have remained limited. In this study, we contrasted proxies of abundances and trends of threatened and conflict-prone carnivores (caracal, cheetah, jackal, lion, leopard, spotted hyaena, striped hyaena) derived separately from scientific knowledge and ILK. We conducted camera trapping, track surveys and semi-structured interviews with local pastoralists from northern Kenya. We found convergences highlighting the need for conservation action and divergences suggesting scientific ecological sampling limitations or underlying socio-psychological phenomena. Overall, our study shows that complementing scientific knowledge and ILK as separate sources of information and opening up space for discrepancies can enrich our understanding of the status and trends of carnivores, as well as recognizing human-carnivore relationships.


Subject(s)
Carnivora , Panthera , Animals , Biodiversity , Conservation of Natural Resources , Humans , Kenya
5.
J Ethnobiol ; 41(3): 331-348, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-35692568

ABSTRACT

The fast and widespread environmental changes that have intensified in the last decades are bringing disproportionate impacts to Indigenous Peoples and Local Communities. Changes that affect water resources are particularly relevant for subsistence-based peoples, many of whom already suffer from constraints regarding reliable access to safe water. Particularly in areas where water is scarce, climate change is expected to amplify existing stresses in water availability, which are also exacerbated by multiple socioeconomic drivers. In this paper, we look into the local perceptions of environmental change expressed by the Daasanach people of northern Kenya, where the impacts of climate change overlap with those brought by large infrastructure projects recently established in the Omo River. We show that the Daasanach have rich and detailed understanding of changes in their environment, especially in relation to water resources. Daasanach understand observations of change in different elements of the social-ecological system as an outcome of complex interactions between climatic and non-climatic drivers of change. Our findings highlight the perceived synergistic effects of climate change and infrastructure projects in water resources, driving multiple and cascading impacts on biophysical elements and local livelihoods. Our results also demonstrate the potential of Local Ecological Knowledge in enhancing the understanding of complex social-ecological issues, such as the impacts of environmental change in local communities. To minimize and mitigate the social-ecological impacts of development projects, it is essential to consider potential synergies between climatic and socioeconomic factors and to ensure inclusive governance rooted in local understandings of environmental change.

6.
Sci Rep ; 10(1): 15576, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968190

ABSTRACT

When individuals breed more than once, parents are faced with the choice of whether to re-mate with their old partner or divorce and select a new mate. Evolutionary theory predicts that, following successful reproduction with a given partner, that partner should be retained for future reproduction. However, recent work in a polygamous bird, has instead indicated that successful parents divorced more often than failed breeders (Halimubieke et al. in Ecol Evol 9:10734-10745, 2019), because one parent can benefit by mating with a new partner and reproducing shortly after divorce. Here we investigate whether successful breeding predicts divorce using data from 14 well-monitored populations of plovers (Charadrius spp.). We show that successful nesting leads to divorce, whereas nest failure leads to retention of the mate for follow-up breeding. Plovers that divorced their partners and simultaneously deserted their broods produced more offspring within a season than parents that retained their mate. Our work provides a counterpoint to theoretical expectations that divorce is triggered by low reproductive success, and supports adaptive explanations of divorce as a strategy to improve individual reproductive success. In addition, we show that temperature may modulate these costs and benefits, and contribute to dynamic variation in patterns of divorce across plover breeding systems.


Subject(s)
Biological Evolution , Charadriiformes/physiology , Reproduction/physiology , Sexual Behavior, Animal/physiology , Animals , Breeding , Divorce , Female , Male , Pair Bond
8.
Nature ; 540(7631): 109-113, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27880762

ABSTRACT

The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.


Subject(s)
Charadriiformes/physiology , Nesting Behavior/physiology , Periodicity , Predatory Behavior , Animals , Biological Evolution , Charadriiformes/classification , Circadian Rhythm , Cues , Environment , Feeding Behavior , Female , Male , Photoperiod , Reproduction , Species Specificity , Starvation/veterinary , Time Factors , Zygote/growth & development
9.
PLoS One ; 8(4): e60998, 2013.
Article in English | MEDLINE | ID: mdl-23613768

ABSTRACT

Social behaviours are highly variable between species, populations and individuals. However, it is contentious whether behavioural variations are primarily moulded by the environment, caused by genetic differences, or a combination of both. Here we establish that biparental care, a complex social behaviour that involves rearing of young by both parents, differs between closely related populations, and then test two potential sources of variation in parental behaviour between populations: ambient environment and genetic differentiation. We use 2904 hours behavioural data from 10 geographically distinct Kentish (Charadrius alexandrinus) and snowy plover (C. nivosus) populations in America, Europe, the Middle East and North Africa to test these two sources of behavioural variation. We show that local ambient temperature has a significant influence on parental care: with extreme heat (above 40 °C) total incubation (i.e. % of time the male or female incubated the nest) increased, and female share (% female share of incubation) decreased. By contrast, neither genetic differences between populations, nor geographic distances predicted total incubation or female's share of incubation. These results suggest that the local environment has a stronger influence on a social behaviour than genetic differentiation, at least between populations of closely related species.


Subject(s)
Charadriiformes/genetics , Environment , Genetic Variation , Nesting Behavior , Animals , Breeding , Female , Life Cycle Stages/genetics , Male
10.
Ecology ; 93(8): 1802-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22928409

ABSTRACT

While much effort has been made to quantify how landscape composition influences the distribution of species, the possibility that geographical differences in species interactions might affect species distributions has received less attention. Investigating a predator-prey setting in a boreal forest ecosystem, we empirically show that large-scale differences in the predator community structure and small-scale competitive exclusion among predators affect the local distribution of a threatened forest specialist more than does landscape composition. Consequently, even though the landscape parameters affecting Siberian flying squirrel (Pteromys volans) distribution (prey) did not differ between nest sites of the predators Northern Goshawks (Accipiter gentilis) and Ural Owls (Strix uralensis), flying squirrels were heterospecifically attracted by goshawks in a region where both predator species were present. No such effect was found in another region where Ural Owls were absent. These results provide evidence that differences in species interactions over large spatial scales may be a major force influencing the distribution and abundance patterns of species. On the basis of these findings, we suspect that subtle species interactions might be a central reason why landscape models constructed to predict species distributions often fail when applied to wider geographical scales.


Subject(s)
Endangered Species , Hawks/physiology , Predatory Behavior/physiology , Sciuridae/physiology , Strigiformes/physiology , Animals , Demography , Ecosystem , Finland , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...