Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Pathol Inform ; 14: 100328, 2023.
Article in English | MEDLINE | ID: mdl-37693862

ABSTRACT

Pathologists need to compare histopathological images of normal and diseased tissues between different samples, cases, and species. We have designed an interactive system, termed Comparative Pathology Workbench (CPW), which allows direct and dynamic comparison of images at a variety of magnifications, selected regions of interest, as well as the results of image analysis or other data analyses such as scRNA-seq. This allows pathologists to indicate key diagnostic features, with a mechanism to allow discussion threads amongst expert groups of pathologists and other disciplines. The data and associated discussions can be accessed online from anywhere in the world. The Comparative Pathology Workbench (CPW) is a web-browser-based visual analytics platform providing shared access to an interactive "spreadsheet" style presentation of image and associated analysis data. The CPW provides a grid layout of rows and columns so that images that correspond to matching data can be organised in the form of an image-enabled "spreadsheet". An individual workbench can be shared with other users with read-only or full edit access as required. In addition, each workbench element or the whole bench itself has an associated discussion thread to allow collaborative analysis and consensual interpretation of the data. The CPW is a Django-based web-application that hosts the workbench data, manages users, and user-preferences. All image data are hosted by other resource applications such as OMERO or the Digital Slide Archive. Further resources can be added as required. The discussion threads are managed using WordPress and include additional graphical and image data. The CPW has been developed to allow integration of image analysis outputs from systems such as QuPath or ImageJ. All software is open-source and available from a GitHub repository.

2.
J Clin Med ; 12(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37373578

ABSTRACT

Crohn's disease (CD) is a chronic inflammatory bowel disease with a high prevalence throughout the world. The development of Crohn's-related fibrosis, which leads to strictures in the gastrointestinal tract, presents a particular challenge and is associated with significant morbidity. There are currently no specific anti-fibrotic therapies available, and so treatment is aimed at managing the stricturing complications of fibrosis once it is established. This often requires invasive and repeated endoscopic or surgical intervention. The advent of single-cell sequencing has led to significant advances in our understanding of CD at a cellular level, and this has presented opportunities to develop new therapeutic agents with the aim of preventing or reversing fibrosis. In this paper, we discuss the current understanding of CD fibrosis pathogenesis, summarise current management strategies, and present the promise of single-cell sequencing as a tool for the development of effective anti-fibrotic therapies.

3.
Nat Rev Gastroenterol Hepatol ; 20(9): 597-614, 2023 09.
Article in English | MEDLINE | ID: mdl-37258747

ABSTRACT

The number of studies investigating the human gastrointestinal tract using various single-cell profiling methods has increased substantially in the past few years. Although this increase provides a unique opportunity for the generation of the first comprehensive Human Gut Cell Atlas (HGCA), there remains a range of major challenges ahead. Above all, the ultimate success will largely depend on a structured and coordinated approach that aligns global efforts undertaken by a large number of research groups. In this Roadmap, we discuss a comprehensive forward-thinking direction for the generation of the HGCA on behalf of the Gut Biological Network of the Human Cell Atlas. Based on the consensus opinion of experts from across the globe, we outline the main requirements for the first complete HGCA by summarizing existing data sets and highlighting anatomical regions and/or tissues with limited coverage. We provide recommendations for future studies and discuss key methodologies and the importance of integrating the healthy gut atlas with related diseases and gut organoids. Importantly, we critically overview the computational tools available and provide recommendations to overcome key challenges.


Subject(s)
Gastrointestinal Tract , Organoids , Humans , Forecasting
4.
BMC Med Inform Decis Mak ; 23(1): 36, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36793076

ABSTRACT

BACKGROUND: The Human Cell Atlas resource will deliver single cell transcriptome data spatially organised in terms of gross anatomy, tissue location and with images of cellular histology. This will enable the application of bioinformatics analysis, machine learning and data mining revealing an atlas of cell types, sub-types, varying states and ultimately cellular changes related to disease conditions. To further develop the understanding of specific pathological and histopathological phenotypes with their spatial relationships and dependencies, a more sophisticated spatial descriptive framework is required to enable integration and analysis in spatial terms. METHODS: We describe a conceptual coordinate model for the Gut Cell Atlas (small and large intestines). Here, we focus on a Gut Linear Model (1-dimensional representation based on the centreline of the gut) that represents the location semantics as typically used by clinicians and pathologists when describing location in the gut. This knowledge representation is based on a set of standardised gut anatomy ontology terms describing regions in situ, such as ileum or transverse colon, and landmarks, such as ileo-caecal valve or hepatic flexure, together with relative or absolute distance measures. We show how locations in the 1D model can be mapped to and from points and regions in both a 2D model and 3D models, such as a patient's CT scan where the gut has been segmented. RESULTS: The outputs of this work include 1D, 2D and 3D models of the human gut, delivered through publicly accessible Json and image files. We also illustrate the mappings between models using a demonstrator tool that allows the user to explore the anatomical space of the gut. All data and software is fully open-source and available online. CONCLUSIONS: Small and large intestines have a natural "gut coordinate" system best represented as a 1D centreline through the gut tube, reflecting functional differences. Such a 1D centreline model with landmarks, visualised using viewer software allows interoperable translation to both a 2D anatomogram model and multiple 3D models of the intestines. This permits users to accurately locate samples for data comparison.


Subject(s)
Imaging, Three-Dimensional , Software , Humans , Imaging, Three-Dimensional/methods
5.
Database (Oxford) ; 2017(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-28365728

ABSTRACT

A primary objective of the eMouseAtlas Project is to enable 3D spatial mapping of whole embryo gene expression data to capture complex 3D patterns for indexing, visualization, cross-comparison and analysis. For this we have developed a spatio-temporal framework based on 3D models of embryos at different stages of development coupled with an anatomical ontology. Here we introduce a method of defining coordinate axes that correspond to the anatomical or biologically relevant anterior-posterior (A-P), dorsal-ventral (D-V) and left-right (L-R) directions. These enable more sophisticated query and analysis of the data with biologically relevant associations, and provide novel data visualizations that can reveal patterns that are otherwise difficult to detect in the standard 3D coordinate space. These anatomical coordinates are defined using the concept of a 'straight mouse-embryo' within which the anatomical coordinates are Cartesian. The straight embryo model has been mapped via a complex non-linear transform onto the standard embryo model. We explore the utility of this anatomical coordinate system in elucidating the spatial relationship of spatially mapped embryonic ' Fibroblast growth factor ' gene expression patterns, and we discuss the importance of this technology in summarizing complex multimodal mouse embryo image data from gene expression and anatomy studies. Database URL: www.emouseatlas.org.


Subject(s)
Body Patterning/physiology , Databases, Genetic , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/embryology , Gene Expression Regulation, Developmental/physiology , Imaging, Three-Dimensional , Animals , Mice
6.
J Biomed Semantics ; 7: 35, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27267125

ABSTRACT

BACKGROUND: High throughput imaging is now available to many groups and it is possible to generate a large quantity of high quality images quickly. Managing this data, consistently annotating it, or making it available to the community are all challenges that come with these methods. RESULTS: PhenoImageShare provides an ontology-enabled lightweight image data query, annotation service and a single point of access backed by a Solr server for programmatic access to an integrated image collection enabling improved community access. PhenoImageShare also provides an easy to use online image annotation tool with functionality to draw regions of interest on images and to annotate them with terms from an autosuggest-enabled ontology-lookup widget. The provenance of each image, and annotation, is kept and links to original resources are provided. The semantic and intuitive search interface is species and imaging technology neutral. PhenoImageShare now provides access to annotation for over 100,000 images for 2 species. CONCLUSION: The PhenoImageShare platform provides underlying infrastructure for both programmatic access and user-facing tools for biologists enabling the query and annotation of federated images. PhenoImageShare is accessible online at http://www.phenoimageshare.org .


Subject(s)
Data Mining/methods , Image Processing, Computer-Assisted , Biological Ontologies , Software , User-Computer Interface
7.
J Biomed Semantics ; 4(1): 15, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-23972281

ABSTRACT

BACKGROUND: The Edinburgh Mouse Atlas Project (EMAP) ontology of mouse developmental anatomy provides a standard nomenclature for describing normal and mutant mouse embryo anatomy. The ontology forms the core of the EMAP atlas and is used for annotating gene expression data by the mouse Gene Expression Database (GXD), Edinburgh Mouse Atlas of Gene Expression (EMAGE) and other database resources. FINDINGS: The original EMAP ontology listed anatomical entities for each developmental stage separately, presented as uniparental graphs organized as a strict partonomy. An "abstract" (i.e. non-stage-specific) representation of mouse developmental anatomy has since been developed. In this version (EMAPA) all instances for a given anatomical entity are presented as a single term, together with the first and last stage at which it is considered to be present. Timed-component anatomies are now derived using staging information in the "primary" non-timed version. Anatomical entities are presented as a directed acyclic graph enabling multiple parental relationships. Subsumption classification as well as partonomic and other types of relationships can now be represented. Most concept names are unique, with compound names constructed using standardized nomenclature conventions, and alternative names associated as synonyms. CONCLUSIONS: The ontology has been extended and refined in a collaborative effort between EMAP and GXD, with additional input from others. Efforts are also underway to improve the revision process with regards to updating and editorial control. The revised EMAPA ontology is freely available from the OBO Foundry resource, with descriptive information and other documentation presented in associated Wiki pages (http://www.obofoundry.org/wiki/index.php/EMAPA:Main_Page).

8.
BMC Bioinformatics ; 13 Suppl 1: S8, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22372999

ABSTRACT

BACKGROUND: In situ hybridisation gene expression information helps biologists identify where a gene is expressed. However, the databases that republish the experimental information online are often both incomplete and inconsistent. Non-monotonic reasoning can help resolve such difficulties - one such form of reasoning is computational argumentation. Essentially this involves asking a computer to debate (i.e. reason about) the validity of a particular statement. Arguments are produced for both sides - the statement is true and, the statement is false - then the most powerful argument is used. In this work the computer is asked to debate whether or not a gene is expressed in a particular mouse anatomical structure. The information generated during the debate can be passed to the biological end-user, enabling their own decision-making process. RESULTS: This paper examines the evolution of a system, Argudas, which tests using computational argumentation in an in situ gene hybridisation gene expression use case. Argudas reasons using information extracted from several different online resources that publish gene expression information for the mouse. The development and evaluation of two prototypes is discussed. Throughout a number of issues shall be raised including the appropriateness of computational argumentation in biology and the challenges faced when integrating apparently similar online biological databases. CONCLUSIONS: From the work described in this paper it is clear that for argumentation to be effective in the biological domain the argumentation community need to develop further the tools and resources they provide. Additionally, the biological community must tackle the incongruity between overlapping and adjacent resources, thus facilitating the integration and modelling of biological information. Finally, this work highlights both the importance of, and difficulty in creating, a good model of the domain.


Subject(s)
Algorithms , Computational Biology/methods , Gene Expression Profiling , In Situ Hybridization , Animals , Data Interpretation, Statistical , Databases, Genetic , Mice
9.
BMC Bioinformatics ; 13 Suppl 1: S1, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22373274

ABSTRACT

As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data.


Subject(s)
Computational Biology/methods , Information Storage and Retrieval/methods , Internet , Data Mining , Semantics
10.
Adv Exp Med Biol ; 736: 655-77, 2012.
Article in English | MEDLINE | ID: mdl-22161358

ABSTRACT

Biomedical imaging is ubiquitous in the Life Sciences. Technology advances, and the resulting multitude of imaging modalities, have led to a sharp rise in the quantity and quality of such images. In addition, computational models are increasingly used to study biological processes involving spatio-temporal changes from the cell to the organism level, e.g., the development of an embryo or the growth of a tumour, and models and images are extensively described in natural language, for example, in research publications and patient records. Together this leads to a major spatio-temporal data and model integration challenge. Biomedical atlases have emerged as a key technology in solving this integration problem. Such atlases typically include an image-based (2D and/or 3D) component as well as a conceptual representation (ontologies) of the organisms involved. In this chapter, we review the notion of atlases in the biomedical domain, how they can be created, how they provide an index to spatio-temporal experimental data, issues of atlas data integration and their use for the analysis of large volumes of biomedical data.


Subject(s)
Biomedical Research/methods , Computational Biology/methods , Imaging, Three-Dimensional/methods , Systems Biology/methods , Animals , Database Management Systems , Humans , Image Interpretation, Computer-Assisted , Internet
11.
J Biomed Semantics ; 2 Suppl 1: S1, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21388570

ABSTRACT

The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.

14.
BMC Bioinformatics ; 10 Suppl 10: S12, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19796396

ABSTRACT

BACKGROUND: A key application area of semantic technologies is the fast-developing field of bioinformatics. Sealife was a project within this field with the aim of creating semantics-based web browsing capabilities for the Life Sciences. This includes meaningfully linking significant terms from the text of a web page to executable web services. It also involves the semantic mark-up of biological terms, linking them to biomedical ontologies, then discovering and executing services based on terms that interest the user. RESULTS: A system was produced which allows a user to identify terms of interest on a web page and subsequently connects these to a choice of web services which can make use of these inputs. Elements of Artificial Intelligence Planning build on this to present a choice of higher level goals, which can then be broken down to construct a workflow. An Argumentation System was implemented to evaluate the results produced by three different gene expression databases. An evaluation of these modules was carried out on users from a variety of backgrounds. Users with little knowledge of web services were able to achieve tasks that used several services in much less time than they would have taken to do this manually. The Argumentation System was also considered a useful resource and feedback was collected on the best way to present results. CONCLUSION: Overall the system represents a move forward in helping users to both construct workflows and analyse results by incorporating specific domain knowledge into the software. It also provides a mechanism by which web pages can be linked to web services. However, this work covers a specific domain and much co-ordinated effort is needed to make all web services available for use in such a way, i.e. the integration of underlying knowledge is a difficult but essential task.


Subject(s)
Computational Biology/methods , Databases, Factual , Information Storage and Retrieval/methods , Software , Vocabulary, Controlled
15.
Thyroid ; 19(1): 7-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19119980

ABSTRACT

The history of the association of goiter and orbital disease is discussed. Although Graves and Basedow are credited with the first descriptions of this association, it was described many years earlier between AD 1000 and 1110 by two Persian physicians and philosophers, Avicenna and Al-Jurjani.


Subject(s)
Graves Disease/history , Exophthalmos/complications , Goiter/complications , History, Medieval , Humans , Persia
16.
Bioinformatics ; 24(13): i304-12, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18586728

ABSTRACT

MOTIVATION: Due to different experimental setups and various interpretations of results, the data contained in online bioinformatics resources can be inconsistent, therefore, making it more difficult for users of these resources to assess the suitability and correctness of the answers to their queries. This work investigates the role of argumentation systems to help users evaluate such answers. More specifically, it looks closely at a gene expression case study, creating an appropriate representation of the underlying data and series of rules that are used by a third-party argumentation engine to reason over the query results provided by the mouse gene expression database EMAGE. RESULTS: A prototype using the ASPIC argumentation engine has been implemented and a preliminary evaluation carried out. This evaluation suggested that argumentation can be used to deal with inconsistent data in biological resources. AVAILABILITY: The ASPIC argumentation engine is available from http://www.argumentation.org. EMAGE gene expression data can be obtained from http://genex.hgu.mrc.ac.uk. The argumentation rules for the gene expression example are available from the lead author upon request.


Subject(s)
Algorithms , Artificial Intelligence , Biomimetics/methods , Computational Biology/methods , Gene Expression Profiling/methods
17.
Stud Health Technol Inform ; 126: 144-53, 2007.
Article in English | MEDLINE | ID: mdl-17476057

ABSTRACT

The paper documents a series of data integration workshops held in 2006 at the UK National e-Science Centre, summarizing a range of the problem/solution scenarios in multi-site and multi-scale data integration with six HealthGrid projects using schizophrenia as a domain-specific test case. It outlines emerging strategies, recommendations and objectives for collaboration on shared ontology-building and harmonization of data for multi-site trials in this domain.


Subject(s)
Medical Informatics/organization & administration , Systems Integration , Education , Humans , Medical Oncology , United Kingdom
18.
Stud Health Technol Inform ; 120: 167-78, 2006.
Article in English | MEDLINE | ID: mdl-16823135

ABSTRACT

The objective of Sealife is the conception and realisation of a semantic Grid browser for the life sciences, which will link the existing Web to the currently emerging eScience infrastructure. The SeaLife Browser will allow users to automatically link a host of Web servers and Web/Grid services to the Web content he/she is visiting. This will be accomplished using eScience's growing number of Web/Grid Services and its XML-based standards and ontologies. The browser will identify terms in the pages being browsed through the background knowledge held in ontologies. Through the use of Semantic Hyperlinks, which link identified ontology terms to servers and services, the SeaLife Browser will offer a new dimension of context-based information integration. In this paper, we give an overview over the different components of the browser and their interplay. This SeaLife Browser will be demonstrated within three application scenarios in evidence-based medicine, literature & patent mining, and molecular biology, all relating to the study of infectious diseases. The three applications vertically integrate the molecule/cell, the tissue/organ and the patient/population level by covering the analysis of high-throughput screening data for endocytosis (the molecular entry pathway into the cell), the expression of proteins in the spatial context of tissue and organs, and a high-level library on infectious diseases designed for clinicians and their patients. For more information see http://www.biote.ctu-dresden.de/sealife.


Subject(s)
Biological Science Disciplines , Communicable Diseases , Computational Biology , Information Storage and Retrieval , Europe , Humans , Internet
19.
Endocr Pract ; 12(6): 682-9, 2006.
Article in English | MEDLINE | ID: mdl-17229667

ABSTRACT

OBJECTIVE: To review the literature on the increased cardiovascular risk in patients with growth hormone (GH) deficiency and the positive effects of GH replacement. METHODS: We analyze the factors that contribute to cardiovascular risk in GH deficiency, including body composition and lipid profile, and summarize GH treatment strategies and results described in the literature. RESULTS: The prominent clinical finding in patients with GH deficiency is the increased abdominal fat, even in patients with normal weight. Cardiac ejection volume tends to be decreased, and arterial distensibility is diminished. The lipid status is also worsened, accompanied by increased inflammatory markers, such as highly sensitive C-reactive protein. Typically, GH treatment reduces visceral fat and increases muscle mass, changes that diminish cardiovascular risk. Because of direct effects as well as increased hemodynamic performance and increased blood volume, cardiac performance is improved. With GH therapy, total cholesterol and low-density lipoprotein levels decrease by 10% to 20%, and inflammatory markers such as C-reactive protein decline. Carbohydrate metabolism during moderate to long-term treatment is minimally affected, although obese patients with GH deficiency on rare occasion may have hyperglycemia or even diabetes. CONCLUSION: The relevance of the beneficial effects of GH on the cardiovascular system is strongly suggested but not fully proved. The results in a large cohort of GH-treated patients (the KIMS or Pharmacia and Upjohn International Metabolic Surveillance database) demonstrated no difference in cardiovascular risk in comparison with that in a control population after a mean of 3 years of treatment.


Subject(s)
Cardiovascular Diseases/etiology , Dwarfism, Pituitary/complications , Dwarfism, Pituitary/drug therapy , Hormone Replacement Therapy , Human Growth Hormone/therapeutic use , Adipose Tissue/physiology , Amino Acids/metabolism , Blood Flow Velocity , Body Fat Distribution , Carbohydrate Metabolism , Cardiovascular Diseases/blood , Cardiovascular Diseases/physiopathology , Carotid Artery, Common/pathology , Carotid Stenosis/pathology , Drug Administration Schedule , Dwarfism, Pituitary/diagnosis , Heart/physiology , Humans , Inflammation Mediators/blood , Lipids/blood , Risk Factors
20.
Bioinformatics ; 21(14): 3155-63, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-15890745

ABSTRACT

MOTIVATION: During task composition, such as can be found in distributed query processing, workflow systems and AI planning, decisions have to be made by the system and possibly by users with respect to how a given problem should be solved. Although there is often more than one correct way of solving a given problem, these multiple solutions do not necessarily lead to the same result. Some researchers are addressing this problem by providing data provenance information. Others use expert advice encoded in a supporting knowledge-base. In this paper, we propose an approach that assesses the importance of such decisions with respect to the overall result. We present a way of measuring decision criticality and describe its potential use. RESULTS: A multi-agent bioinformatics integration system is used as the basis of a framework that facilitates such functionality. We propose an agent architecture, and a concrete bioinformatics example (prototype) is used to show how certain decisions may not be critical in the context of more complex tasks.


Subject(s)
Algorithms , Artificial Intelligence , Computational Biology/methods , Decision Support Techniques , Task Performance and Analysis , User-Computer Interface , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...