Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
New Phytol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073209

ABSTRACT

Mycorrhizal associations are key mutualisms that shape the structure of forest communities and multiple ecosystem functions. However, we lack a framework for predicting the varying dominance of distinct mycorrhizal associations in an integrated proxy of multifunctionality across ecosystems. Here, we used the datasets containing diversity of mycorrhizal associations and 18 ecosystem processes related to supporting, provisioning, and regulating services to examine how the dominance of ectomycorrhiza (EcM) associations affects ecosystem multifunctionality in subtropical mountain forests in Southwest China. Meanwhile, we synthesized the prevalence of EcM-dominant effects on ecosystem functioning in forest biomes. Our results demonstrated that elevation significantly modified the distributions of EcM trees and fungal dominance, which in turn influenced multiple functions simultaneously. Multifunctionality increased with increasing proportion of EcM associations, supporting the ectomycorrhizal-dominance hypothesis. Meanwhile, we observed that the impacts of EcM dominance on individual ecosystem functions exhibited different relationships among forest biomes. Our findings highlight the importance of ectomycorrhizal dominance in regulating multifunctionality in subtropical forests. However, this ectomycorrhizal feedback in shaping ecosystem functions cannot necessarily be generalized across forests. Therefore, we argue that the predictions for ecosystem multifunctionality in response to the shifts of mycorrhizal composition could vary across space and time.

2.
Plant Divers ; 46(2): 229-237, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38807909

ABSTRACT

Chinese Assam tea (Camellia sinensis var. assamica) is an important tea crop with a long history of cultivation in Yunnan, China. Despite its potential value as a genetic resource, its genetic diversity and domestication/breeding history remain unclear. To address this issue, we genotyped 469 ancient tea plant trees representing 26 C. sinensis var. assamica populations, plus two of its wild relatives (six and three populations of C. taliensis and C. crassicolumna, respectively) using 16 nuclear microsatellite loci. Results showed that Chinese Assam tea has a relatively high, but comparatively lower gene diversity (HS = 0.638) than the wild relative C. crassicolumna (HS = 0.658). Clustering in STRUCTURE indicated that Chinese Assam tea and its two wild relatives formed distinct genetic groups, with considerable interspecific introgression. The Chinese Assam tea accessions clustered into three gene pools, corresponding well with their geographic distribution. However, NewHybrids analysis indicated that 68.48% of ancient Chinese Assam tea plants from Xishuangbanna were genetic intermediates between the Puer and Lincang gene pools. In addition, 10% of the ancient Chinese Assam tea individuals were found to be hybrids between Chinese Assam tea and C. taliensis. Our results suggest that Chinese Assam tea was domesticated separately in three gene pools (Puer, Lincang and Xishuangbanna) in the Mekong River valley and that the hybrids were subsequently selected during the domestication process. Although the domestication history of Chinese Assam tea in southwestern Yunnan remains complex, our results will help to identify valuable genetic resources that may be useful in future tea breeding programs.

3.
Nat Commun ; 15(1): 4217, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760359

ABSTRACT

Helix mimicry provides probes to perturb protein-protein interactions (PPIs). Helical conformations can be stabilized by joining side chains of non-terminal residues (stapling) or via capping fragments. Nature exclusively uses capping, but synthetic helical mimics are heavily biased towards stapling. This study comprises: (i) creation of a searchable database of unique helical N-caps (ASX motifs, a protein structural motif with two intramolecular hydrogen-bonds between aspartic acid/asparagine and following residues); (ii) testing trends observed in this database using linear peptides comprising only canonical L-amino acids; and, (iii) novel synthetic N-caps for helical interface mimicry. Here we show many natural ASX motifs comprise hydrophobic triangles, validate their effect in linear peptides, and further develop a biomimetic of them, Bicyclic ASX Motif Mimics (BAMMs). BAMMs are powerful helix inducing motifs. They are synthetically accessible, and potentially useful to a broad section of the community studying disruption of PPIs using secondary structure mimics.


Subject(s)
Amino Acid Motifs , Computational Biology , Computational Biology/methods , Hydrogen Bonding , Peptides/chemistry , Peptides/metabolism , Hydrophobic and Hydrophilic Interactions , Protein Structure, Secondary , Models, Molecular , Amino Acid Sequence , Databases, Protein , Proteins/chemistry , Proteins/metabolism , Aspartic Acid/chemistry
4.
Sci Total Environ ; 935: 173343, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38777069

ABSTRACT

Niche convergence or conservatism have been proposed as essential mechanisms underlying elevational plant community assembly in tropical mountain ecosystems. Subtropical mountains, compared to tropical mountains, are likely to be shaped by a mixing of different geographic affinities of species and remain somehow unclear. Here, we used 31 0.1-ha permanent plots distributed in subtropical forests on the eastern and western aspects of the Gaoligong Mountains, southwest China between 1498 m and 3204 m a.sl. to evaluate how niche-based and biogeographic processes shape tree community assembly along elevational gradients. We analyzed the elevational patterns of taxonomic, phylogenetic and functional diversity, as well as of individual traits, and assessed the relative importance of environmental effects on these diversity measures. We then classified tree species as being either tropical affiliated or temperate affiliated and estimated their contribution to the composition of biogeographic affinities. Species richness decreased with elevation, and species composition showed apparent turnover across the aspects and elevations. Most traits exhibited convergent patterns across the entire elevational gradient. Phylogenetic and functional diversity showed opposing patterns, with phylogenetic diversity increasing and functional diversity decreasing with elevation. Soil nutrients, especially phosphorus and nitrogen, appeared to be the main abiotic variables driving the elevational diversity patterns. Communities at lower elevations were occupied by tropical genera, while highlands contained species of tropical and temperate biogeographic affinities. Moreover, the high phylogenetic diversity at high elevations were likely due to differences in evolutionary history between temperate and tropical species. Our results highlight the importance of niche convergence of tropical species and the legacy of biogeographic history on the composition and structure of subtropical mountain forests. Furthermore, limited soil phosphorus caused traits divergence and the partitioning for different forms of phosphorus may explain the high biodiversity found in phosphorus-limited subtropical forests.


Subject(s)
Altitude , Biodiversity , Forests , Trees , China , Phylogeny , Ecosystem , Tropical Climate
5.
J Am Chem Soc ; 146(15): 10331-10341, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573124

ABSTRACT

Disruption of protein-protein interactions is medicinally important. Interface helices may be mimicked in helical probes featuring enhanced rigidities, binding to protein targets, stabilities in serum, and cell uptake. This form of mimicry is dominated by stapling between side chains of helical residues: there has been less progress on helical N-caps, and there were no generalizable C-caps. Conversely, in natural proteins, helicities are stabilized and terminated by C- and N-caps but not staples. Bicyclic caps previously introduced by us enable interface helical mimicry featuring rigid synthetic caps at both termini in this work. An unambiguously helical dual-capped system proved to be conformationally stable, binding cyclins A and E, and showed impressive cellular uptake. In addition, the dual-capped mimic was completely resistant to proteolysis in serum over an extended period when compared with "gold standard" hydrocarbon-stapled controls. Dual-capped peptidomimetics are a new, generalizable paradigm for helical interface probe design.


Subject(s)
Peptides , Peptides/chemistry , Protein Structure, Secondary , Proteolysis
6.
AoB Plants ; 16(1): plae002, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38298756

ABSTRACT

The effect of floral traits, floral rewards and plant water availability on plant-pollinator interactions are well-documented; however, empirical evidence of their impact on flowering phenology in high-elevation meadows remains scarce. In this study, we assessed three levels of flowering phenology, i.e. population-, individual- and flower-level (floral longevity), in two nearby but contrasting (wet versus dry) sub-alpine meadows on Yulong Snow Mountain, southwestern China. We also measured a series of floral traits (pollen number, ovule number, and the ratio of pollen to ovule number per flower, i.e. pollen:ovule ratio [P/O]) and floral rewards (nectar availability and pollen presentation) as plausible additional sources of variation for each phenological level. Floral longevity in the wet meadow was significantly longer than that for the dry meadow, whereas population- and individual-flowering duration were significantly shorter. Our results showed a significant positive relationship between flowering phenology with pollen number and P/O per flower; there was no relationship with ovule number per flower. Further, we found a significant effect of flowering phenology on nectar availability and pollen presentation. Our findings suggest that shorter floral longevity in dry habitats compared to wet might be due to water-dependent maintenance costs of flowers, where the population- and individual-level flowering phenology may be less affected by habitats. Our study shows how different levels of flowering phenology underscore the plausible effects of contrasting habitats on reproductive success.

7.
Org Biomol Chem ; 22(3): 506-512, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38111346

ABSTRACT

Combination of cysteine-containing peptides with electrophiles provides efficient access to cyclo-organopeptides. However, there are no routes to intrinsically fluorescent cyclo-organopeptides containing robust, brilliant fluorophores emitting at wavelengths longer than cellular autofluorescence. We show such fluorescent cyclo-organopeptides can be made via SNAr reactions of cysteine-containing peptides with a BODIPY system. Seven compounds of this type were prepared to test as probes; six contained peptide sequences corresponding to loop regions in brain-derived neurotrophic factor and neurotrophic factor 4 (BDNF and NT-4) which bind tropomyocin receptor kinase B (TrkB). Cellular assays in serum-free media indicated two of the six key compounds induced survival of HEK293 cells stably transfected with TrkB whereas a control did not. The two compounds inducing cell survival bound TrkB on those cells (Kd ∼40 and 47 nM), illustrating how intrinsically fluorescent cyclo-organopeptides can be assayed for quantifiable binding to surface receptors in cell membrane environments.


Subject(s)
Cysteine , Humans , HEK293 Cells , Cell Membrane
8.
BMC Plant Biol ; 23(1): 645, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38097946

ABSTRACT

BACKGROUND: The genus Triplostegia contains two recognized species, T. glandulifera and T. grandiflora, but its phylogenetic position and species delimitation remain controversial. In this study, we assembled plastid genomes and nuclear ribosomal DNA (nrDNA) cistrons sampled from 22 wild Triplostegia individuals, each from a separate population, and examined these with 11 recently published Triplostegia plastomes. Morphological traits were measured from herbarium specimens and wild material, and ecological niche models were constructed. RESULTS: Triplostegia is a monophyletic genus within the subfamily Dipsacoideae comprising three monophyletic species, T. glandulifera, T. grandiflora, and an unrecognized species Triplostegia sp. A, which occupies much higher altitude than the other two. The new species had previously been misidentified as T. glandulifera, but differs in taproot, leaf, and other characters. Triplotegia is an old genus, with stem age 39.96 Ma, and within it T. glandulifera diverged 7.94 Ma. Triplostegia grandiflora and sp. A diverged 1.05 Ma, perhaps in response to Quaternary climate fluctuations. Niche overlap between Triplostegia species was positively correlated with their phylogenetic relatedness. CONCLUSIONS: Our results provide new insights into the species delimitation of Triplostegia, and indicate that a taxonomic revision of Triplostegia is needed. We also identified that either rpoB-trnC or ycf1 could serve as a DNA barcode for Triplostegia.


Subject(s)
Caprifoliaceae , Genome, Plastid , Humans , Adult , Phylogeny , Caprifoliaceae/genetics , Genome, Plastid/genetics , Phenotype , DNA, Ribosomal
9.
Mol Pharm ; 20(12): 6140-6150, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37939020

ABSTRACT

Glioblastoma (GBM) is a highly aggressive form of brain cancer with a poor prognosis and limited treatment options. The ALK and c-MET inhibitor Crizotinib has demonstrated preclinical therapeutic potential for newly diagnosed GBM, although its efficacy is limited by poor penetration of the blood brain barrier. Here, we identify Crizotinib as a novel inhibitor of nuclear factor-κB (NF-κB)-inducing kinase, which is a key regulator of GBM growth and proliferation. We further show that the conjugation of Crizotinib to a heptamethine cyanine dye, or a near-infrared dye (IR-Crizotinib), attenuated glioma cell proliferation and survival in vitro to a greater extent than unconjugated Crizotinib. Moreover, we observed increased IR-Crizotinib localization to orthotopic mouse xenograft GBM tumors, which resulted in impaired tumor growth in vivo. Overall, IR-Crizotinib exhibited improved intracranial chemotherapeutic delivery and tumor localization with concurrent inhibition of NIK and noncanonical NF-κB signaling, thereby reducing glioma growth in vitro, as well as in vivo, and increasing survival in a preclinical rodent model.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Mice , Animals , Humans , Crizotinib/pharmacology , Crizotinib/therapeutic use , NF-kappa B , Cell Line, Tumor , Glioma/drug therapy , Glioma/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Glioblastoma/drug therapy , NF-kappaB-Inducing Kinase
10.
Angew Chem Int Ed Engl ; 62(49): e202307092, 2023 12 04.
Article in English | MEDLINE | ID: mdl-37849440

ABSTRACT

Cyclic peptides comprising endocyclic organic fragments, "cyclo-organopeptides", can be probes for perturbing protein-protein interactions (PPIs). Finding loop mimics is difficult because of high conformational variability amongst targets. Backbone Matching (BM), introduced here, helps solve this problem in the illustrative cases by facilitating efficient evaluation of virtual cyclo-organopeptide core-structure libraries. Thus, 86 rigid organic fragments were selected to build a library of 602 cyclo-organopeptides comprising Ala and organic parts: "cyclo-{-(Ala)n -organo-}". The central hypothesis is "hit" library members have accessible low energy conformers corresponding to backbone structures of target protein loops, while library members which cannot attain this conformation are probably unworthy of further evaluation. BM thereby prioritizes candidate loop mimics, so that less than 10 cyclo-organopeptides are needed to be prepared to find leads for two illustrative PPIs: iNOS ⋅ SPSB2, and uPA ⋅ uPAR.


Subject(s)
Peptides, Cyclic , Proteins , Proteins/chemistry , Peptides, Cyclic/chemistry , Molecular Conformation , Protein Conformation
11.
BMC Plant Biol ; 23(1): 425, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37710175

ABSTRACT

BACKGROUND: As the male and female gametophytes of flowering plants, pollen and ovules largely determine the upper and lower boundaries of plant reproductive success. It is commonly predicted that pollen and ovule number per flower should increase, and pollen-ovule ratio (P/O) per flower should decrease with increasing elevation in response to a more stochastic pollination environment. Here, we aimed to determine the response of pollen number, ovule number, and P/O to other floral traits and elevation gradients for 84 insect-pollinated herbaceous flowering plant species in five sub-alpine and alpine communities (2709 to 3896 m a.s.l.) on Yulong Snow Mountain, southwestern China. RESULTS: Six floral traits, including P/O, floral display area, flower number, tube depth, flower shape, and pollen presentation, were highly correlated with pollen and ovule number per flower. With increasing elevation, pollen number and P/O per flower increased marginally and significantly, respectively; ovule number per individual, flower number per individual, stigma stamen separation, and inflorescence height decreased significantly. However, ovule number per flower and other floral traits (i.e., floral display area, tube depth, stigma height, stamen height, and pollen and P/O per individual) did not change with elevation. We detected significant phylogenetic signals for pollen number, ovule number, and P/O, suggesting that these traits may be highly conserved and with limited response to changing environmental conditions. CONCLUSIONS: Results revealed patterns of plant reproductive character evolution along elevation gradients and the potential factors governing their spatial variation in high-elevation environments. Plant species at high elevations are more likely adapted to cross-pollination, indicated by increased P/O per flower at high elevations on Yulong Mountain. Combined effects of phylogenetic history and plant-pollinator interactions should determine plant trait evolution.


Subject(s)
Magnoliopsida , Ovule , Phylogeny , Pollen , China , Flowers , Magnoliopsida/genetics
12.
Br J Cancer ; 129(8): 1238-1250, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37626264

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibition yields differential cellular responses in multiple tumor models due to redundancy in cell cycle. We investigate whether the differential requirements of CDKs in multiple cell lines function as determinant of response to pharmacological agents that target these kinases. METHODS: We utilized proteolysis-targeted chimeras (PROTACs) that are conjugated with palbociclib (Palbo-PROTAC) to degrade both CDK4 and CDK6. FN-POM was synthesized by chemically conjugating pomalidomide moiety with a multi-kinase inhibitor, FN-1501. Patient derived PDAC organoids and PDX model were utilized to investigate the effect of FN-POM in combination with palbociclib. RESULTS: Palbo-PROTAC mediates differential impact on cell cycle in different tumor models, indicating that the dependencies to CDK4 and 6 kinases are heterogenous. Cyclin E overexpression uncouples cell cycle from CDK4/6 and drives resistance to palbo-PROTAC. Elevated expression of P16INK4A antagonizes PROTAC-mediated degradation of CDK4 and 6. FN-POM degrades cyclin E and CDK2 and inhibits cell cycle progression in P16INK4A-high tumor models. Combination of palbociclib and FN-POM cooperatively inhibit tumor cell proliferation via RB activation. CONCLUSION: Resistance to CDK4/6 inhibition could be overcome by pharmacologically limiting Cyclin E/CDK2 complex and proves to be a potential therapeutic approach.

13.
Sci Total Environ ; 895: 165128, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37364836

ABSTRACT

Climate change has impacted the distribution and abundance of numerous plant and animal species during the last century. Orchidaceae is one of the largest yet most threatened families of flowering plants. However, how the geographical distribution of orchids will respond to climate change is largely unknown. Habenaria and Calanthe are among the largest terrestrial orchid genera in China and around the world. In this paper, we modeled the potential distribution of eight Habenaria species and ten Calanthe species in China under the near-current period (1970-2000) and the future period (2081-2100) to test the following two hypotheses: 1) narrow-ranged species are more vulnerable to climate change than wide-ranged species; 2) niche overlap between species is positively correlated with their phylogenetic relatedness. Our results showed that most Habenaria species will expand their ranges, although the climatic space at the southern edge will be lost for most Habenaria species. In contrast, most Calanthe species will shrink their ranges dramatically. Contrasting range changes between Habenaria and Calanthe species may be explained by their differences in climate-adaptive traits such as underground storage organs and evergreen/deciduous habits. Habenaria species are predicted to generally shift northwards and to higher elevations in the future, while Calanthe species are predicted to shift westwards and to higher elevations. The mean niche overlap among Calanthe species was higher than that of Habenaria species. No significant relationship between niche overlap and phylogenetic distance was detected for both Habenaria and Calanthe species. Species range changes in the future was also not correlated with their near current range sizes for both Habenaria and Calanthe. The results of this study suggest that the current conservation status of both Habenaria and Calanthe species should be adjusted. Our study highlights the importance of considering climate-adaptive traits in understanding the responses of orchid taxa to future climate change.


Subject(s)
Climate Change , Orchidaceae , Phylogeny , China
14.
Biomedicines ; 11(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37189742

ABSTRACT

Nano-engineered medical products first appeared in the last decade. The current research in this area focuses on developing safe drugs with minimal adverse effects associated with the pharmacologically active cargo. Transdermal drug delivery, an alternative to oral administration, offers patient convenience, avoids first-pass hepatic metabolism, provides local targeting, and reduces effective drug toxicities. Nanomaterials provide alternatives to conventional transdermal drug delivery including patches, gels, sprays, and lotions, but it is crucial to understand the transport mechanisms involved. This article reviews the recent research trends in transdermal drug delivery and emphasizes the mechanisms and nano-formulations currently in vogue.

15.
PhytoKeys ; 222: 153-171, 2023.
Article in English | MEDLINE | ID: mdl-37252644

ABSTRACT

Comparatively few species of the insectivorous genus Pinguicula L. have been recognized in South America so far. In recent years, a number of narrowly endemic taxa from the Andes have been described that simultaneously refined the broad taxonomic concepts of the "historical" species. Here, we describe two striking new species from Southern Ecuador that further condense the circumscription of Pinguiculacalyptrata Kunth. Pinguiculajimburensissp. nov. and P.ombrophilasp. nov. are clearly beyond the taxonomic scope of the known species and consequently described as new to science. The deviating morphological features of the two new taxa are described and illustrated and the remaining morphological spectrum of P.calyptrata in Ecuador is outlined. The two new species add to the exceptional biodiversity in the Amotape-Huancabamba Zone and underline its importance as a biodiversity hotspot in urgent need of protection.


ResumenActualmente pocas especies del género insectívoro Pinguicula L. se reconocen de forma comparativa en América del Sur. En los últimos años, se han descrito varios taxones micro-endémicos de los Andes que simultáneamente han refinado los amplios conceptos taxonómicos de las especies "históricas". Aquí, describimos dos nuevas especies sorprendentes del sur del Ecuador que condensan aún más la circunscripción de Pinguiculacalyptrata Kunth. Pinguiculajimburensissp. nov. and P.ombrophilasp. nov. están más allá del alcance taxonómico de las especies conocidas y, en consecuencia, descritas como nuevas para la ciencia. Se describen e ilustran los caracteres morfológicos divergentes de los dos nuevos taxones y se discute la variación morfológica restante de P.calyptrata en Ecuador. Las dos nuevas especies se suman a la excepcional biodiversidad de la zona Amotape-Huancabamba y se realza su importancia como un punto crítico de biodiversidad que necesita protección urgente.

16.
Mol Ecol Resour ; 23(6): 1389-1402, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37021680

ABSTRACT

DNA barcoding is a well-established tool for rapid species identification and biodiversity monitoring. A reliable and traceable DNA barcode reference library with extensive coverage is necessary but unavailable for many geographical regions. The arid region in northwestern China, a vast area of about 2.5 million km2 , is ecologically fragile and often overlooked in biodiversity studies. In particular, DNA barcode data from the arid region in China are lacking. We develop and evaluate the efficacy of an extensive DNA barcode library for native flowering plants in the arid region of northwestern China. Plant specimens were collected, identified and vouchered for this purpose. The database utilized four DNA barcode markers, namely rbcL, matK, ITS and ITS2, for 1816 accessions (representing 890 species from 385 genera and 72 families), and consisted of 5196 barcode sequences. Individual barcodes varied in resolution rates: species- and genus-level rates for rbcL, matK, ITS and ITS2 were 79.9%-51.1%/76.1%, 79.9%-67.2%/88.9%, 85.0%-72.0%/88.2% and 81.0%-67.4%/84.9%, respectively. The three-barcode combination of rbcL + matK + ITS (RMI) revealed a higher species- and genus-level resolution (75.5%/92.1%, respectively). A total of 110 plastomes were newly generated as super-barcodes to increase species resolution for seven species-rich genera, namely Astragalus, Caragana, Lactuca, Lappula, Lepidium, Silene and Zygophyllum. Plastomes revealed higher species resolution compared to standard DNA barcodes and their combination. We suggest future databases include super-barcodes, especially for species-rich and complex genera. The plant DNA barcode library in the current study provides a valuable resource for future biological investigations in the arid regions of China.


Subject(s)
DNA Barcoding, Taxonomic , Magnoliopsida , Humans , Magnoliopsida/genetics , DNA, Plant/genetics , Plants/genetics , China , Phylogeny
17.
ACS Cent Sci ; 9(2): 300-306, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36844493

ABSTRACT

Macrocyclic peptides are the prevalent way to mimic interface helices for disruption of protein interactions, but current strategies to do this via synthetic C-cap mimics are underdeveloped and suboptimal. Bioinformatic studies described here were undertaken to better understand Schellman loops, the most common C-caps in proteins, to design superior synthetic mimics. An algorithm (Schellman Loop Finder) was developed, and data mining with this led to the discovery that these secondary structures are often stabilized by combinations of three hydrophobic side chains, most frequently from Leu, to form hydrophobic triangles. That insight facilitated design of synthetic mimics, bicyclic Schellman loop mimics (BSMs), where the hydrophobic triumvirate was replaced by 1,3,5-trimethylbenzene. We demonstrate that BSMs can be made quickly and efficiently, and are more rigid and helix-inducing than the best current C-cap mimics, which are rare and all monocycles.

18.
Plants (Basel) ; 12(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36771618

ABSTRACT

A new species, Primula luquanensis Z.K.Wu and Wei Zhou sp. nov. (Primulaceae) is described and illustrated from Yunnan Province, China. It is morphologically assigned to P. sect Aleuritia based on its dwarf and hairless habit and coverage by farina on both sides of the leaf blade and scape. This new species is similar to P. nutantiflora and P. yunnanensis, but it is easily distinguished by its stolons, solitary bract, bell-shaped corolla and monomorphic floral form. The new species also has a substantially reduced corolla tube, presenting a unique floral form in a genus where heterostyly typically prevails.

19.
ChemMedChem ; 18(5): e202200561, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36630600

ABSTRACT

Heptamethine (Cy7) dyes with meso-Cl substituents injected intravenously (iv) into mice accumulate in tumors and persist there over several days. We believe this occurs via meso-Cl displacement by the only free cysteine residues of albumin; therefore, conjugating tumor-seeking dyes with fragments can increase selective therapeutic delivery to tumors and drug residence. This strategy has elevated significance recently because the first tumor-seeking dye-drug conjugate has moved into clinical trials. Options for further clinical research include modifying the dye, and use of preformed albumin adducts instead of dyes alone. Herein we show correlations of cytotoxicities, lipophilicities, organelle localization, apoptosis, cell-cycle arrest, wound healing/migration assays, and reactivities/affinities with human serum albumin are difficult to observe. However, our studies arrived at an important conclusion: preformed dye-drug-HSA adducts are less cytotoxic, and therefore preferable for subsequent clinical work, relative to direct injection of meso-Cl-containing forms.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Mice , Humans , Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Serum Albumin, Human
20.
Mol Ecol ; 32(23): 6345-6362, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36086900

ABSTRACT

Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.


Subject(s)
DNA Barcoding, Taxonomic , Ecosystem , DNA Barcoding, Taxonomic/methods , Pollen/genetics , Plants/genetics , DNA , Pollination/genetics
SELECTION OF CITATIONS
SEARCH DETAIL