Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Basic Res Cardiol ; 118(1): 25, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37378715

ABSTRACT

RNA-protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2.


Subject(s)
Heart Failure , TOR Serine-Threonine Kinases , Cardiomegaly/metabolism , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Mice , Rats
4.
Nat Cancer ; 3(9): 1039-1051, 2022 09.
Article in English | MEDLINE | ID: mdl-35715501

ABSTRACT

Patients with cancer frequently receive immune-checkpoint inhibitors (ICIs), which may modulate immune responses to COVID-19 vaccines. Recently, cytokine release syndrome (CRS) was observed in a patient with cancer who received BTN162b2 vaccination under ICI treatment. Here, we analyzed adverse events and serum cytokines in patients with 23 different tumors undergoing (n = 64) or not undergoing (n = 26) COVID-19 vaccination under ICI therapy in a prospectively planned German single-center cohort study (n = 220). We did not observe clinically relevant CRS (≥grade 2) after vaccination (95% CI 0-5.6%; Common Terminology of Adverse Events v.5.0) in this small cohort. Within 4 weeks after vaccination, serious adverse events occurred in eight patients (12.5% 95% CI 5.6-23%): six patients were hospitalized due to events common under cancer therapy including immune related adverse events and two patients died due to conditions present before vaccination. Despite absence of CRS symptoms, a set of pairwise-correlated CRS-associated cytokines, including CXCL8 and interleukin-6 was >1.5-fold upregulated in 40% (95% CI 23.9-57.9%) of patients after vaccination. Hence, elevated cytokine levels are common and not sufficient to establish CRS diagnosis.


Subject(s)
COVID-19 Vaccines , COVID-19 , Neoplasms , COVID-19 Vaccines/adverse effects , Cohort Studies , Cytokine Release Syndrome , Cytokines , Humans , Immune Checkpoint Inhibitors , Immunotherapy/adverse effects , Interleukin-6 , Neoplasms/drug therapy , Vaccination
5.
Dermatologie (Heidelb) ; 73(10): 804-808, 2022 Oct.
Article in German | MEDLINE | ID: mdl-35428953

ABSTRACT

Characteristic skin changes lead to diagnosis of pseudoxanthoma elasticum (PXE), an ectopic mineralization disorder, involving primarily the skin, eyesight, and arterial vessels. Early recognition is crucial for timely treatment of extracutaneous complications. We hereby report a series of four cases of PXE with pathognomonic skin lesions and a broad spectrum of systemic complications.


Subject(s)
Pseudoxanthoma Elasticum , Dermatologists , Humans , Multidrug Resistance-Associated Proteins , Pseudoxanthoma Elasticum/diagnosis , Skin/pathology
6.
Hautarzt ; 72(1): 65-70, 2021 Jan.
Article in German | MEDLINE | ID: mdl-32803361

ABSTRACT

Pupura annularis telangiectodes (PAT) is a rare entity belonging to the spectrum of the pigmented purpuric dermatoses. PAT presents clinically as symmetric, annular erythema with teleangiectasia on the lower extremities and preferably affects young women. Histology usually reveals extravasated erythrocytes accompanied by a lymphocyte-dominated inflammatory infiltrate in the superficial dermis. Medication can often be identified as causative. In patients with idiopathic disease, topical corticoidsteroids are the treatment of choice. Compression therapy may be supportive.


Subject(s)
Purpura , Erythema , Female , Humans
7.
J Mol Cell Cardiol ; 141: 30-42, 2020 04.
Article in English | MEDLINE | ID: mdl-32173353

ABSTRACT

Pathological cardiac hypertrophy is an independent risk for heart failure (HF) and sudden death. Deciphering signaling pathways regulating intracellular Ca2+ homeostasis that control adaptive and pathological cardiac growth may enable identification of novel therapeutic targets. The objective of the present study is to determine the role of the store-operated calcium entry-associated regulatory factor (Saraf), encoded by the Tmem66 gene, on cardiac growth control in vitro and in vivo. Saraf is a single-pass membrane protein located at the sarco/endoplasmic reticulum and regulates intracellular calcium homeostasis. We found that Saraf expression was upregulated in the hypertrophied myocardium and was sufficient for cell growth in response to neurohumoral stimulation. Increased Saraf expression caused cell growth, which was associated with dysregulation of calcium-dependent signaling and sarcoplasmic reticulum calcium content. In vivo, Saraf augmented cardiac myocyte growth in response to angiotensin II and resulted in increased cardiac remodeling together with worsened cardiac function. Mechanistically, Saraf activated mTORC1 (mechanistic target of rapamycin complex 1) and increased protein synthesis, while mTORC1 inhibition blunted Saraf-dependent cell growth. In contrast, the hearts of Saraf knockout mice and Saraf-deficient myocytes did not show any morphological or functional alterations after neurohumoral stimulation, but Saraf depletion resulted in worsened cardiac function after acute pressure overload. SARAF knockout blunted transverse aortic constriction cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for SARAF in compensatory myocyte growth. Collectively, these results reveal a novel link between sarcoplasmic reticulum calcium homeostasis and mTORC1 activation that is regulated by Saraf.


Subject(s)
Calcium-Binding Proteins/metabolism , Heart/growth & development , Mechanistic Target of Rapamycin Complex 1/metabolism , Amino Acid Sequence , Animals , Animals, Newborn , Base Sequence , Calcium Signaling , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Cell Proliferation , Cell Size , Electrocardiography , Gene Knockdown Techniques , Heart Function Tests , Homeostasis , Humans , Membrane Proteins , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Rats
8.
Sci Rep ; 9(1): 16787, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31728028

ABSTRACT

Endothelial pro-inflammatory activation plays a pivotal role in atherosclerosis, and many pro-inflammatory and atherogenic signals converge upon mechanistic target of rapamycin (mTOR). Inhibitors of mTOR complex 1 (mTORC1) reduced atherosclerosis in preclinical studies, but side effects including insulin resistance and dyslipidemia limit their clinical use in this context. Therefore, we investigated PRAS40, a cell type-specific endogenous modulator of mTORC1, as alternative target. Indeed, we previously found PRAS40 gene therapy to improve metabolic profile; however, its function in endothelial cells and its role in atherosclerosis remain unknown. Here we show that PRAS40 negatively regulates endothelial mTORC1 and pro-inflammatory signaling. Knockdown of PRAS40 in endothelial cells promoted TNFα-induced mTORC1 signaling, proliferation, upregulation of inflammatory markers and monocyte recruitment. In contrast, PRAS40-overexpression blocked mTORC1 and all measures of pro-inflammatory signaling. These effects were mimicked by pharmacological mTORC1-inhibition with torin1. In an in vivo model of atherogenic remodeling, mice with induced endothelium-specific PRAS40 deficiency showed enhanced endothelial pro-inflammatory activation as well as increased neointimal hyperplasia and atherosclerotic lesion formation. These data indicate that PRAS40 suppresses atherosclerosis via inhibition of endothelial mTORC1-mediated pro-inflammatory signaling. In conjunction with its favourable effects on metabolic homeostasis, this renders PRAS40 a potential target for the treatment of atherosclerosis.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Atherosclerosis/pathology , Mechanistic Target of Rapamycin Complex 1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/immunology , Cell Proliferation , Disease Models, Animal , Endothelial Cells/metabolism , Gain of Function Mutation , Gene Knockout Techniques , Human Umbilical Vein Endothelial Cells , Humans , Loss of Function Mutation , Mice , Signal Transduction
9.
Circ Res ; 125(4): 431-448, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31284834

ABSTRACT

RATIONALE: Gene expression profiles have been mainly determined by analysis of transcript abundance. However, these analyses cannot capture posttranscriptional gene expression control at the level of translation, which is a key step in the regulation of gene expression, as evidenced by the fact that transcript levels often poorly correlate with protein levels. Furthermore, genome-wide transcript profiling of distinct cell types is challenging due to the fact that lysates from tissues always represent a mixture of cells. OBJECTIVES: This study aimed to develop a new experimental method that overcomes both limitations and to apply this method to perform a genome-wide analysis of gene expression on the translational level in response to pressure overload. METHODS AND RESULTS: By combining ribosome profiling (Ribo-seq) with a ribosome-tagging approach (Ribo-tag), it was possible to determine the translated transcriptome in specific cell types from the heart. After pressure overload, we monitored the cardiac myocyte translatome by purifying tagged cardiac myocyte ribosomes from cardiac lysates and subjecting the ribosome-protected mRNA fragments to deep sequencing. We identified subsets of mRNAs that are regulated at the translational level and found that translational control determines early changes in gene expression in response to cardiac stress in cardiac myocytes. Translationally controlled transcripts are associated with specific biological processes related to translation, protein quality control, and metabolism. Mechanistically, Ribo-seq allowed for the identification of upstream open reading frames in transcripts, which we predict to be important regulators of translation. CONCLUSIONS: This method has the potential to (1) provide a new tool for studying cell-specific gene expression at the level of translation in tissues, (2) reveal new therapeutic targets to prevent cellular remodeling, and (3) trigger follow-up studies that address both, the molecular mechanisms involved in the posttranscriptional control of gene expression in cardiac cells, and the protective functions of proteins expressed in response to cellular stress.


Subject(s)
Myocytes, Cardiac/metabolism , Ribosomes/metabolism , Sequence Analysis, RNA/methods , Ventricular Dysfunction/genetics , Animals , Cells, Cultured , Heart Ventricles/cytology , Hemodynamics , Male , Mice , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/chemistry , Stress, Physiological , Ventricular Dysfunction/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...