Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Fish Biol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769029

ABSTRACT

Anadromous rainbow smelt (Osmerus mordax, [Mitchill 1814]) are found along the northeast Atlantic coastline of North America, with their range now limited to north of Cape Cod, Massachusetts, USA. Although their anadromous life cycles are described broadly, gaps remain regarding how adult rainbow smelt use estuaries post-spawning, including movement behaviors, habitats used, and specific timing of emigration to coastal waters. In spring 2021, we used acoustic telemetry to characterize movements during and after the spawning season of rainbow smelt captured in tributaries to Great Bay, New Hampshire, USA, a large estuarine system near the southern edge of their range. Forty-four adult rainbow smelt (n = 35 male, n = 9 female) were tagged with Innovasea V5 180-kHz transmitters and an array of 22,180 kHz VR2W receivers were deployed throughout Great Bay to detect movements of tagged fish from March to October 2021. Rainbow smelt were detected 14,186 times on acoustic telemetry receivers, with 41 (93%) of the tagged individuals being detected at least once post-tagging. Individuals were detected moving between tributaries, revealing that rainbow smelt can use multiple rivers during the spawning season (March-April). Mark-recapture Cormack-Jolly-Seber models estimated 83% (95% confidence interval 66%-92%) of rainbow smelt survived to the mainstem Piscataqua River, and a minimum of 50% (22 of 44) reached the seaward-most receivers and were presumed to have survived emigration. Most individuals that survived remained in the estuary for multiple weeks (average = 19.47 ± 1.99 standard error days), displaying extended use of estuarine environments. Downstream movements occurred more frequently during ebb tides and upstream movements with flood tides, possibly a mechanism to reduce energy expenditures. Fish emigrated from the estuary by mid-May to the coastal Gulf of Maine. Our results underscore that rainbow smelt need access to a variety of habitats, including multiple tributaries and high-quality estuarine habitat, to complete their life cycle.

2.
mBio ; 14(1): e0331322, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36629429

ABSTRACT

The island of Hunga Tonga Hunga Ha'apai (HTHH) in the Kingdom of Tonga was formed by Surtseyan eruptions and persisted for 7 years before being obliterated by a massive volcanic eruption on 15 January 2022. Before it was destroyed, HTHH was an unparalleled natural laboratory to study primary succession on a newly formed landmass. We characterized the microbial communities found on the surface sediments of HTHH using a combination of quantitative PCR, marker gene sequencing, and shotgun metagenomic analyses. Contrary to expectations, photosynthetic cyanobacteria were not detected in these sediments, even though they are typically dominant in the earliest stages of primary succession in other terrestrial environments. Instead, our results suggest that the early sediment communities were composed of a diverse array of bacterial taxa, including trace gas oxidizers, anoxygenic photosynthesizers, and chemolithotrophs capable of metabolizing inorganic sulfur, with these bacteria likely sourced from nearby active geothermal environments. While the destruction of HTHH makes it impossible to revisit the site to conduct in situ metabolic measurements or observe how the microbial communities might have continued to change over time, our results do suggest that the early microbial colonizers have unique origins and metabolic capabilities. IMPORTANCE The volcanic island of Hunga Tonga Hunga Ha'apai in the Kingdom of Tonga represents a very rare example of new island formation and thus a unique opportunity to study how organisms colonize a new landmass. We found that the island was colonized by diverse microbial communities shortly after its formation in 2015, with these microbes likely originating from nearby geothermal environments. Primary succession in this system was distinct from that typically observed in other terrestrial environments, with the early microbial colonizers relying on unique metabolic strategies to survive on the surface of this newly formed island, including the capacity to generate energy via sulfur and trace gas metabolism.


Subject(s)
Cyanobacteria , Tonga , Cyanobacteria/metabolism , Volcanic Eruptions/analysis , Sulfur/metabolism
3.
Mar Biol ; 164(5): 111, 2017.
Article in English | MEDLINE | ID: mdl-28479611

ABSTRACT

Bdelloura candida (Platyhelminthes, Tricladida, Maricola) is an ectocommensal symbiont on the American horseshoe crab Limulus polyphemus, living on the book gills and appendages, where it spends its entire life. Given its limited dispersal capabilities and its inability to live outside of the host, we hypothesized a genetic structure that parallels that of its host. We obtained 84 planarian individuals from 19 horseshoe crabs collected from 10 sites from Massachusetts to Florida. We amplified the mitochondrial 16S rRNA and the nuclear internal transcribed spacer 2 and conducted phylogeographic and population genetic analyses, which show a clear and strong genetic break between the populations in the Atlantic and the Gulf coasts. Among the Atlantic populations, two additional, weaker barriers located along Cape Hatteras and Cape Cod restrict gene flow. Even though previous studies have suggested that the populations of the host may be in decline, those of B. candida remain stable, and some even shows signatures of expansion. Our results indicate that the phylogeography of these marine ectocommensal triclads closely mirrors that of its Limulus host, and highlight the challenges to both host and symbiont to genetically connect populations across their distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...