Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Biochem Soc Trans ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778761

ABSTRACT

Several biomolecular condensates assemble in mammalian cells in response to viral infection. The most studied of these are stress granules (SGs), which have been proposed to promote antiviral innate immune signaling pathways, including the RLR-MAVS, the protein kinase R (PKR), and the OAS-RNase L pathways. However, recent studies have demonstrated that SGs either negatively regulate or do not impact antiviral signaling. Instead, the SG-nucleating protein, G3BP1, may function to perturb viral RNA biology by condensing viral RNA into viral-aggregated RNA condensates, thus explaining why viruses often antagonize G3BP1 or hijack its RNA condensing function. However, a recently identified condensate, termed double-stranded RNA-induced foci, promotes the activation of the PKR and OAS-RNase L antiviral pathways. In addition, SG-like condensates known as an RNase L-induced bodies (RLBs) have been observed during many viral infections, including SARS-CoV-2 and several flaviviruses. RLBs may function in promoting decay of cellular and viral RNA, as well as promoting ribosome-associated signaling pathways. Herein, we review these recent advances in the field of antiviral biomolecular condensates, and we provide perspective on the role of canonical SGs and G3BP1 during the antiviral response.

2.
Sci Signal ; 17(837): eadi9844, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771918

ABSTRACT

Oligoadenylate synthetase 3 (OAS3) and ribonuclease L (RNase L) are components of a pathway that combats viral infection in mammals. Upon detection of viral double-stranded RNA (dsRNA), OAS3 synthesizes 2'-5'-oligo(A), which activates the RNase domain of RNase L by promoting the homodimerization and oligomerization of RNase L monomers. Activated RNase L rapidly degrades all cellular mRNAs, shutting off several cellular processes. We sought to understand the molecular mechanisms underlying the rapid activation of RNase L in response to viral infection. Through superresolution microscopy and live-cell imaging, we showed that OAS3 and RNase L concentrated into higher-order cytoplasmic complexes known as dsRNA-induced foci (dRIF) in response to dsRNA or infection with dengue virus, Zika virus, or West Nile virus. The concentration of OAS3 and RNase L at dRIF corresponded with the activation of RNase L-mediated RNA decay. We showed that dimerized/oligomerized RNase L concentrated in a liquid-like shell surrounding a core OAS3-dRIF structure and dynamically exchanged with the cytosol. These data establish that the condensation of dsRNA, OAS3, and RNase L into dRIF is a molecular switch that promotes the rapid activation of RNase L upon detection of dsRNA in mammalian cells.


Subject(s)
2',5'-Oligoadenylate Synthetase , Endoribonucleases , RNA, Double-Stranded , Zika Virus , Endoribonucleases/metabolism , Endoribonucleases/genetics , Endoribonucleases/chemistry , Humans , 2',5'-Oligoadenylate Synthetase/metabolism , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/chemistry , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , Zika Virus/metabolism , Animals , Dengue Virus/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , RNA Stability , West Nile virus/metabolism , West Nile virus/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Enzyme Activation , HeLa Cells , HEK293 Cells
3.
Proc Natl Acad Sci U S A ; 121(15): e2320194121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38568967

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Endoribonucleases/metabolism , Signal Transduction , Antiviral Agents
4.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585896

ABSTRACT

Subgenomic flavivirus RNAs (sfRNAs) are structured RNA elements encoded in the 3'-UTR of flaviviruses that promote viral infection by inhibiting cellular RNA decay machinery. Herein, we analyze the production of sfRNAs using single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) and super-resolution microscopy during West Nile virus, Zika virus, or Dengue virus serotype 2 infection. We show that sfRNAs are initially localized diffusely in the cytosol or in processing bodies (P-bodies). However, upon activation of the host antiviral endoribonuclease, Ribonuclease L (RNase L), nearly all sfRNAs re-localize to antiviral biological condensates known as RNase L-induced bodies (RLBs). RLB-mediated sequestration of sfRNAs reduces sfRNA association with RNA decay machinery in P-bodies, which coincides with increased viral RNA decay. These findings establish a role of RLBs in promoting viral RNA decay, demonstrating the complex host-pathogen interactions at the level of RNA decay and biological condensation.

5.
Virol J ; 21(1): 38, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321453

ABSTRACT

During viral infection there is dynamic interplay between the virus and the host to regulate gene expression. In many cases, the host induces the expression of antiviral genes to combat infection, while the virus uses "host shut-off" systems to better compete for cellular resources and to limit the induction of the host antiviral response. Viral mechanisms for host shut-off involve targeting translation, altering host RNA processing, and/or inducing the degradation of host mRNAs. In this review, we discuss the diverse mechanisms viruses use to degrade host mRNAs. In addition, the widespread degradation of host mRNAs can have common consequences including the accumulation of RNA binding proteins in the nucleus, which leads to altered RNA processing, mRNA export, and changes to transcription.


Subject(s)
Virus Diseases , Viruses , Humans , Gene Expression Regulation , RNA, Messenger/genetics , Viruses/genetics , Antiviral Agents , Virus Replication
6.
Sci Adv ; 10(5): eadk8152, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38295168

ABSTRACT

G3BP1 is an RNA binding protein that condenses untranslating messenger RNAs into stress granules (SGs). G3BP1 is inactivated by multiple viruses and is thought to antagonize viral replication by SG-enhanced antiviral signaling. Here, we show that neither G3BP1 nor SGs generally alter the activation of innate immune pathways. Instead, we show that the RNAs encoded by West Nile virus, Zika virus, and severe acute respiratory syndrome coronavirus 2 are prone to G3BP1-dependent RNA condensation, which is enhanced by limiting translation initiation and correlates with the disruption of viral replication organelles and viral RNA replication. We show that these viruses counteract condensation of their RNA genomes by inhibiting the RNA condensing function of G3BP proteins, hijacking the RNA decondensing activity of eIF4A, and/or maintaining efficient translation. These findings argue that RNA condensation can function as an intrinsic antiviral mechanism, which explains why many viruses inactivate G3BP proteins and suggests that SGs may have arisen as a vestige of this antiviral mechanism.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , DNA Helicases , RNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA, Viral , RNA Recognition Motif Proteins , Antiviral Agents
7.
Methods Enzymol ; 692: 157-175, 2023.
Article in English | MEDLINE | ID: mdl-37925178

ABSTRACT

Ribonuclease L (RNase L) is a mammalian endoribonuclease that initiates the mass degradation of cellular mRNAs in response to double-stranded RNA or viral infection. The kinetic rate of mRNA decay upon RNase L activation has been elusive because RNase L is heterogeneously activated with respect to time in individual cells. Herein, we describe a method using immunofluorescence combined with single-molecule fluorescence in situ hybridization (smFISH) to determine single-cell mRNA decay rates upon RNase L activation. Using these approaches, we deduce that the rate of mRNA decay upon RNase L activation is extremely rapid, whereby the half-life of stable mRNAs such as GAPDH mRNA is reduced to ∼15 minutes in individual cells. This allows for RNase L to degrade nearly every mRNA in a cell in less than 1 hour, which is much faster than the decay rate that would be derived using bulk measurement techniques for mRNA levels, such as qRT-PCR. These single-cell approaches can generally be employed to resolve mRNA decay kinetics in additional contexts.


Subject(s)
Endoribonucleases , RNA Stability , Animals , In Situ Hybridization, Fluorescence , Endoribonucleases/genetics , Endoribonucleases/metabolism , Single-Cell Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mammals/genetics
8.
Wiley Interdiscip Rev RNA ; 14(4): e1770, 2023.
Article in English | MEDLINE | ID: mdl-36479619

ABSTRACT

In response to viral infection, mammalian cells activate several innate immune pathways to antagonize viral gene expression. Upon recognition of viral double-stranded RNA, protein kinase R (PKR) phosphorylates the alpha subunit of eukaryotic initiation factor 2 (eIF2α) on serine 51. This inhibits canonical translation initiation, which broadly antagonizes viral protein synthesis. It also promotes the assembly of cytoplasmic ribonucleoprotein complexes termed stress granules (SGs). SGs are widely thought to promote cell survival and antiviral signaling. However, co-activation of the OAS/RNase L antiviral pathway inhibits the assembly of SGs and promotes the assembly of an alternative ribonucleoprotein complex termed an RNase L-dependent body (RLB). The formation of RLBs has been observed in response to double-stranded RNA, dengue virus infection, or SARS-CoV-2 infection. Herein, we review the distinct biogenesis pathways and properties of SGs and RLBs, and we provide perspective on their potential functions during the antiviral response. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Turnover and Surveillance > Regulation of RNA Stability RNA Export and Localization > RNA Localization.


Subject(s)
COVID-19 , Ribonucleoproteins , Animals , Humans , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , RNA, Double-Stranded , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Antiviral Agents , Mammals/genetics , Mammals/metabolism
9.
EMBO J ; 42(7): e111870, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36178199

ABSTRACT

The presence of foreign nucleic acids in the cytosol is a marker of infection. Cells have sensors, also known as pattern recognition receptors (PRRs), in the cytosol that detect foreign nucleic acid and initiate an innate immune response. Recent studies have reported the condensation of multiple PRRs including PKR, NLRP6, and cGAS, with their nucleic acid activators into discrete nucleoprotein assemblies. Nucleic acid-protein condensates form due to multivalent interactions and can create high local concentrations of components. The formation of PRR-containing condensates may alter the magnitude or timing of PRR activation. In addition, unique condensates form following RNase L activation or during paracrine signaling from virally infected cells that may play roles in antiviral defense. These observations suggest that condensate formation may be a conserved mechanism that cells use to regulate activation of the innate immune response and open an avenue for further investigation into the composition and function of these condensates. Here we review the nucleic acid-protein granules that are implicated in the innate immune response, discuss general consequences of condensate formation and signal transduction, as well as what outstanding questions remain.


Subject(s)
Nucleic Acids , Immunity, Innate , Receptors, Pattern Recognition , Signal Transduction , Cytosol
10.
PLoS Pathog ; 18(11): e1010930, 2022 11.
Article in English | MEDLINE | ID: mdl-36318584

ABSTRACT

The antiviral endoribonuclease, RNase L, is activated by the mammalian innate immune response to destroy host and viral RNA to ultimately reduce viral gene expression. Herein, we show that RNase L and RNase L-mediated mRNA decay are primarily localized to the cytoplasm. Consequently, RNA-binding proteins (RBPs) translocate from the cytoplasm to the nucleus upon RNase L activation due to the presence of intact nuclear RNA. The re-localization of RBPs to the nucleus coincides with global alterations to RNA processing in the nucleus. While affecting many host mRNAs, these alterations are pronounced in mRNAs encoding type I and type III interferons and correlate with their retention in the nucleus and reduction in interferon protein production. Similar RNA processing defects also occur during infection with either dengue virus or SARS-CoV-2 when RNase L is activated. These findings reveal that the distribution of RBPs between the nucleus and cytosol is dictated by the availability of RNA in each compartment. Thus, viral infections that trigger RNase L-mediated cytoplasmic RNA in the cytoplasm also alter RNA processing in the nucleus, resulting in an ingenious multi-step immune block to protein biogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , COVID-19/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Cytoplasm/metabolism , Mammals
11.
Proc Natl Acad Sci U S A ; 119(33): e2204235119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939694

ABSTRACT

Mammalian cells respond to dsRNA in multiple manners. One key response to dsRNA is the activation of PKR, an eIF2α kinase, which triggers translational arrest and the formation of stress granules. However, the process of PKR activation in cells is not fully understood. In response to increased endogenous or exogenous dsRNA, we observed that PKR forms novel cytosolic condensates, referred to as dsRNA-induced foci (dRIFs). dRIFs contain dsRNA, form in proportion to dsRNA, and are enhanced by longer dsRNAs. dRIFs enrich several other dsRNA-binding proteins, including ADAR1, Stau1, NLRP1, and PACT. Strikingly, dRIFs correlate with and form before translation repression by PKR and localize to regions of cells where PKR activation is initiated. We hypothesize that dRIF formation is a mechanism that cells use to enhance the sensitivity of PKR activation in response to low levels of dsRNA or to overcome viral inhibitors of PKR activation.


Subject(s)
RNA, Double-Stranded , RNA, Viral , Virus Diseases , eIF-2 Kinase , Enzyme Activation , Humans , Immunity, Innate , Phosphorylation , Protein Biosynthesis , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/immunology , RNA, Viral/chemistry , RNA, Viral/immunology , RNA-Binding Proteins/chemistry , Stress Granules , Virus Diseases/enzymology , Virus Diseases/immunology , eIF-2 Kinase/chemistry
12.
EMBO J ; 41(9): e110137, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35355287

ABSTRACT

Numerous membrane-less organelles, composed of a combination of RNA and proteins, are observed in the nucleus and cytoplasm of eukaryotic cells. These RNP granules include stress granules (SGs), processing bodies (PBs), Cajal bodies, and nuclear speckles. An unresolved question is how frequently RNA molecules are required for the integrity of RNP granules in either the nucleus or cytosol. To address this issue, we degraded intracellular RNA in either the cytosol or the nucleus by the activation of RNase L and examined the impact of RNA loss on several RNP granules. We find the majority of RNP granules, including SGs, Cajal bodies, nuclear speckles, and the nucleolus, are altered by the degradation of their RNA components. In contrast, PBs and super-enhancer complexes were largely not affected by RNA degradation in their respective compartments. RNA degradation overall led to the apparent dissolution of some membrane-less organelles, whereas others reorganized into structures with altered morphology. These findings highlight a critical and widespread role of RNA in the organization of several RNP granules.


Subject(s)
Cytoplasmic Granules , RNA , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cytoplasmic Granules/metabolism , RNA/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism
13.
J Cell Sci ; 135(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35098996

ABSTRACT

To rapidly adapt to stresses such as infections, cells have evolved several mechanisms, which include the activation of stress response pathways and the innate immune response. These stress responses result in the rapid inhibition of translation and condensation of stalled mRNAs with RNA-binding proteins and signalling components into cytoplasmic biocondensates called stress granules (SGs). Increasing evidence suggests that SGs contribute to antiviral defence, and thus viruses need to evade these responses to propagate. We previously showed that feline calicivirus (FCV) impairs SG assembly by cleaving the scaffolding protein G3BP1. We also observed that uninfected bystander cells assembled G3BP1-positive granules, suggesting a paracrine response triggered by infection. We now present evidence that virus-free supernatant generated from infected cells can induce the formation of SG-like foci, which we name paracrine granules. They are linked to antiviral activity and exhibit specific kinetics of assembly-disassembly, and protein and RNA composition that are different from canonical SGs. We propose that this paracrine induction reflects a novel cellular defence mechanism to limit viral propagation and promote stress responses in bystander cells.


Subject(s)
Caliciviridae Infections , Stress Granules , Animals , Caliciviridae Infections/immunology , Calicivirus, Feline/immunology , Cats , Poly-ADP-Ribose Binding Proteins/immunology , RNA Recognition Motif Proteins/metabolism , Stress Granules/immunology , Virus Replication/physiology
15.
J Cell Sci ; 134(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34397095

ABSTRACT

Stress granules (SGs) are cytoplasmic assemblies of RNA and protein that form when translation is repressed during the integrated stress response. SGs assemble from the combination of RNA-RNA, RNA-protein and protein-protein interactions between messenger ribonucleoprotein complexes (mRNPs). The protein adenosine deaminase acting on RNA 1 (ADAR1, also known as ADAR) recognizes and modifies double-stranded RNAs (dsRNAs) within cells to prevent an aberrant innate immune response. ADAR1 localizes to SGs, and since RNA-RNA interactions contribute to SG assembly and dsRNA induces SGs, we examined how ADAR1 affects SG formation. First, we demonstrate that ADAR1 depletion triggers SGs by allowing endogenous dsRNA to activate the integrated stress response through activation of PKR (also known as EIF2AK2) and translation repression. However, we also show that ADAR1 limits SG formation independently of translation inhibition. ADAR1 repression of SGs is independent of deaminase activity but is dependent on dsRNA-binding activity, suggesting a model where ADAR1 binding limits RNA-RNA and/or RNA-protein interactions necessary for recruitment to SGs. Given that ADAR1 expression is induced during viral infection, these findings have implications for the role of ADAR1 in the antiviral response. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Adenosine Deaminase , Immunity, Innate , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Cytoplasmic Granules/metabolism , Humans , RNA, Double-Stranded/genetics , RNA-Binding Proteins/genetics
16.
RNA ; 27(11): 1318-1329, 2021 11.
Article in English | MEDLINE | ID: mdl-34315815

ABSTRACT

The transcriptional induction of interferon (IFN) genes is a key feature of the mammalian antiviral response that limits viral replication and dissemination. A hallmark of severe COVID-19 disease caused by SARS-CoV-2 is the low presence of IFN proteins in patient serum despite elevated levels of IFN-encoding mRNAs, indicative of post-transcriptional inhibition of IFN protein production. Here, we performed single-molecule RNA visualization to examine the expression and localization of host mRNAs during SARS-CoV-2 infection. Our data show that the biogenesis of type I and type III IFN mRNAs is inhibited at multiple steps during SARS-CoV-2 infection. First, translocation of the interferon regulatory factor 3 (IRF3) transcription factor to the nucleus is limited in response to SARS-CoV-2, indicating that SARS-CoV-2 inhibits RLR-MAVS signaling and thus weakens transcriptional induction of IFN genes. Second, we observed that IFN mRNAs primarily localize to the site of transcription in most SARS-CoV-2 infected cells, suggesting that SARS-CoV-2 either inhibits the release of IFN mRNAs from their sites of transcription and/or triggers decay of IFN mRNAs in the nucleus upon exiting the site of transcription. Lastly, nuclear-cytoplasmic transport of IFN mRNAs is inhibited during SARS-CoV-2 infection, which we propose is a consequence of widespread degradation of host cytoplasmic basal mRNAs in the early stages of SARS-CoV-2 replication by the SARS-CoV-2 Nsp1 protein, as well as the host antiviral endoribonuclease, RNase L. Importantly, IFN mRNAs can escape SARS-CoV-2-mediated degradation if they reach the cytoplasm, making rescue of mRNA export a viable means for promoting the immune response to SARS-CoV-2.


Subject(s)
COVID-19/genetics , Host-Pathogen Interactions/genetics , Interferons/genetics , RNA Stability , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/genetics , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Cell Line , Endoribonucleases/genetics , Endoribonucleases/metabolism , Humans , In Situ Hybridization, Fluorescence/methods , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferons/metabolism , RNA, Messenger/metabolism , Single Molecule Imaging
17.
Sci Adv ; 7(23)2021 06.
Article in English | MEDLINE | ID: mdl-34088676

ABSTRACT

RNase L is widely thought to limit viral protein synthesis by cleaving host rRNA and viral mRNA, resulting in translation arrest and viral mRNA degradation. Here, we show that the mRNAs of dengue virus and influenza A virus largely escape RNase L-mediated mRNA decay, and this permits viral protein production. However, activation of RNase L arrests nuclear mRNA export, which strongly inhibits influenza A virus protein synthesis and reduces cytokine production. The heterogeneous and temporal nature of the mRNA export block in individual cells permits sufficient production of antiviral cytokines from transcriptionally induced host mRNAs. This defines RNase L-mediated arrest of mRNA export as a key antiviral shutoff and cytokine regulatory pathway.


Subject(s)
Influenza A virus , Virus Replication , Antiviral Agents , Cytokines , Endoribonucleases , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viral Proteins/metabolism
18.
bioRxiv ; 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33907748

ABSTRACT

A key feature of the mammalian innate immune response to viral infection is the transcriptional induction of interferon (IFN) genes, which encode for secreted proteins that prime the antiviral response and limit viral replication and dissemination. A hallmark of severe COVID-19 disease caused by SARS-CoV-2 is the low presence of IFN proteins in patient serum despite elevated levels of IFN-encoding mRNAs, indicative of post-transcriptional inhibition of IFN protein production. Herein, we show SARS-CoV-2 infection limits type I and type III IFN biogenesis by preventing the release of mRNA from their sites of transcription and/or triggering their nuclear degradation. In addition, SARS-CoV-2 infection inhibits nuclear-cytoplasmic transport of IFN mRNAs as a consequence of widespread cytosolic mRNA degradation mediated by both activation of the host antiviral endoribonuclease, RNase L, and by the SARS-CoV-2 protein, Nsp1. These findings argue that inhibition of host and/or viral Nsp1-mediated mRNA decay, as well as IFN treatments, may reduce viral-associated pathogenesis by promoting the innate immune response.

19.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33219112

ABSTRACT

The COVID-19 pandemic has created a public health crisis. Because SARS-CoV-2 can spread from individuals with presymptomatic, symptomatic, and asymptomatic infections, the reopening of societies and the control of virus spread will be facilitated by robust population screening, for which virus testing will often be central. After infection, individuals undergo a period of incubation during which viral titers are too low to detect, followed by exponential viral growth, leading to peak viral load and infectiousness and ending with declining titers and clearance. Given the pattern of viral load kinetics, we model the effectiveness of repeated population screening considering test sensitivities, frequency, and sample-to-answer reporting time. These results demonstrate that effective screening depends largely on frequency of testing and speed of reporting and is only marginally improved by high test sensitivity. We therefore conclude that screening should prioritize accessibility, frequency, and sample-to-answer time; analytical limits of detection should be secondary.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Mass Screening/methods , Viral Load , Asymptomatic Infections , Calibration , Computer Simulation , Epidemics , Humans , Kinetics , Limit of Detection , Models, Theoretical , Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity , Time Factors
20.
Genes Dev ; 34(23-24): 1697-1712, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33184222

ABSTRACT

Deciphering the mechanisms that regulate the sensitivity of pathogen recognition receptors is imperative to understanding infection and inflammation. Here we demonstrate that the RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) acts on both host and virus-derived 5'-triphosphate RNAs rendering them less active in inducing a RIG-I-mediated immune response. Reducing DUSP11 levels alters host triphosphate RNA packaged in extracellular vesicles and induces enhanced RIG-I activation in cells exposed to extracellular vesicles. Virus infection of cells lacking DUSP11 results in a higher proportion of triphosphorylated viral transcripts and attenuated virus replication, which is rescued by reducing RIG-I expression. Consistent with the activity of DUSP11 in the cellular RIG-I response, mice lacking DUSP11 display lower viral loads, greater sensitivity to triphosphorylated RNA, and a signature of enhanced interferon activity in select tissues. Our results reveal the importance of controlling 5'-triphosphate RNA levels to prevent aberrant RIG-I signaling and demonstrate DUSP11 as a key effector of this mechanism.


Subject(s)
DEAD Box Protein 58/immunology , Dual-Specificity Phosphatases/immunology , Dual-Specificity Phosphatases/metabolism , RNA/immunology , Virus Diseases/immunology , Animals , Cell Line , HEK293 Cells , Host-Pathogen Interactions , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferons/metabolism , Liposomes/immunology , Mice , Mice, Inbred C57BL , Polyphosphates , RNA Viruses/physiology , RNA, Viral/metabolism , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...