Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 3702, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32710081

ABSTRACT

Spinal cord injury (SCI) causes immune dysfunction, increasing the risk of infectious morbidity and mortality. Since bone marrow hematopoiesis is essential for proper immune function, we hypothesize that SCI disrupts bone marrow hematopoiesis. Indeed, SCI causes excessive proliferation of bone marrow hematopoietic stem and progenitor cells (HSPC), but these cells cannot leave the bone marrow, even after challenging the host with a potent inflammatory stimulus. Sequestration of HSPCs in bone marrow after SCI is linked to aberrant chemotactic signaling that can be reversed by post-injury injections of Plerixafor (AMD3100), a small molecule inhibitor of CXCR4. Even though Plerixafor liberates HSPCs and mature immune cells from bone marrow, competitive repopulation assays show that the intrinsic long-term functional capacity of HSPCs is still impaired in SCI mice. Together, our data suggest that SCI causes an acquired bone marrow failure syndrome that may contribute to chronic immune dysfunction.


Subject(s)
Bone Marrow Failure Disorders/etiology , Bone Marrow/metabolism , Spinal Cord Injuries/complications , Animals , Benzylamines , Bone Marrow/pathology , Bone Marrow Cells , Bone Marrow Failure Disorders/pathology , Cell Proliferation , Chemokine CXCL12 , Cyclams , Disease Models, Animal , Female , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Heterocyclic Compounds/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Receptors, CXCR4/antagonists & inhibitors , Signal Transduction , Spinal Cord Injuries/immunology
2.
Clin Cancer Res ; 26(3): 669-678, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31672772

ABSTRACT

PURPOSE: EGF-like domain 7 (EGFL7) is a secreted protein and recently has been shown to play an important role in acute myeloid leukemia (AML); however, the underlying mechanism by which EGFL7 promotes leukemogenesis is largely unknown. EXPERIMENTAL DESIGN: Using an antibody interaction array, we measured the ability of EGFL7 to bind directly approximately 400 proteins expressed by primary AML blasts. Primary patient samples were stimulated in vitro with recombinant EGFL7 (rEGFL7) or anti-EGFL7 blocking antibody to assess alterations in downstream signaling and the ability to effect blast differentiation and survival. We treated three independent AML models with anti-EGFL7 or IgG1 control to determine whether anti-EGFL7 could prolong survival in vivo. RESULTS: We found EGFL7 significantly binds several signaling proteins important for normal and malignant hematopoiesis including NOTCH. Stimulation of AML blasts with rEGFL7 reduced NOTCH intracellular domain and NOTCH target gene expression while treatment with an anti-EGFL7 blocking antibody resulted in reactivation of NOTCH signaling, increased differentiation, and apoptosis. Competitive ligand-binding assays showed rEGFL7 inhibits DELTA-like (DLL) 4-mediated NOTCH activation while anti-EGFL7 combined with DLL4 significantly increased NOTCH activation and induced apoptosis. Using three different AML mouse models, we demonstrated that in vivo treatment with anti-EGFL7 alone results in increased survival. CONCLUSIONS: Our data demonstrate that EGFL7 contributes to NOTCH silencing in AML by antagonizing canonical NOTCH ligand binding. Reactivation of NOTCH signaling in vivo using anti-EGFL7 results in prolonged survival of leukemic mice, supporting the use of EGFL7 as a novel therapeutic target in AML.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Calcium-Binding Proteins/metabolism , EGF Family of Proteins/metabolism , Leukemia, Myeloid, Acute/pathology , Receptors, Notch/antagonists & inhibitors , Animals , Apoptosis , Calcium-Binding Proteins/genetics , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , EGF Family of Proteins/genetics , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Receptors, Notch/metabolism , Signal Transduction
3.
Proc Natl Acad Sci U S A ; 114(23): E4641-E4647, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28533390

ABSTRACT

Epithelial growth factor-like 7 (EGFL7) is a protein that is secreted by endothelial cells and plays an important role in angiogenesis. Although EGFL7 is aberrantly overexpressed in solid tumors, its role in leukemia has not been evaluated. Here, we report that levels of both EGFL7 mRNA and EGFL7 protein are increased in blasts of patients with acute myeloid leukemia (AML) compared with normal bone marrow cells. High EGFL7 mRNA expression associates with lower complete remission rates, and shorter event-free and overall survival in older (age ≥60 y) and younger (age <60 y) patients with cytogenetically normal AML. We further show that AML blasts secrete EGFL7 protein and that higher levels of EGFL7 protein are found in the sera from AML patients than in sera from healthy controls. Treatment of patient AML blasts with recombinant EGFL7 in vitro leads to increases in leukemic blast cell growth and levels of phosphorylated AKT. EGFL7 blockade with an anti-EGFL7 antibody reduced the growth potential and viability of AML cells. Our findings demonstrate that increased EGFL7 expression and secretion is an autocrine mechanism supporting growth of leukemic blasts in patients with AML.


Subject(s)
Endothelial Growth Factors/genetics , Endothelial Growth Factors/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Adult , Age Factors , Aged , Aged, 80 and over , Angiogenic Proteins/antagonists & inhibitors , Angiogenic Proteins/genetics , Angiogenic Proteins/metabolism , Animals , Antibodies, Blocking/pharmacology , Calcium-Binding Proteins , Case-Control Studies , Cell Line, Tumor , Cell Proliferation , Disease-Free Survival , EGF Family of Proteins , Endothelial Growth Factors/antagonists & inhibitors , Female , Humans , Leukemia, Myeloid, Acute/therapy , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Prognosis , Proteins/metabolism , Proteins/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Risk Factors , Up-Regulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...