Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Open Forum Infect Dis ; 11(3): ofae081, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38440301

ABSTRACT

Background: Index-cluster studies may help characterize the spread of communicable infections in the presymptomatic state. We describe a prospective index-cluster sampling strategy (ICSS) to detect presymptomatic respiratory viral illness and its implementation in a college population. Methods: We enrolled an annual cohort of first-year undergraduates who completed daily electronic symptom diaries to identify index cases (ICs) with respiratory illness. Investigators then selected 5-10 potentially exposed, asymptomatic close contacts (CCs) who were geographically co-located to follow for infections. Symptoms and nasopharyngeal samples were collected for 5 days. Logistic regression model-based predictions for proportions of self-reported illness were compared graphically for the whole cohort sampling group and the CC group. Results: We enrolled 1379 participants between 2009 and 2015, including 288 ICs and 882 CCs. The median number of CCs per IC was 6 (interquartile range, 3-8). Among the 882 CCs, 111 (13%) developed acute respiratory illnesses. Viral etiology testing in 246 ICs (85%) and 719 CCs (82%) identified a pathogen in 57% of ICs and 15% of CCs. Among those with detectable virus, rhinovirus was the most common (IC: 18%; CC: 6%) followed by coxsackievirus/echovirus (IC: 11%; CC: 4%). Among 106 CCs with a detected virus, only 18% had the same virus as their associated IC. Graphically, CCs did not have a higher frequency of self-reported illness relative to the whole cohort sampling group. Conclusions: Establishing clusters by geographic proximity did not enrich for cases of viral transmission, suggesting that ICSS may be a less effective strategy to detect spread of respiratory infection.

2.
iScience ; 27(1): 108288, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38179063

ABSTRACT

To elucidate host response elements that define impending decompensation during SARS-CoV-2 infection, we enrolled subjects hospitalized with COVID-19 who were matched for disease severity and comorbidities at the time of admission. We performed combined single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) on peripheral blood mononuclear cells (PBMCs) at admission and compared subjects who improved from their moderate disease with those who later clinically decompensated and required invasive mechanical ventilation or died. Chromatin accessibility and transcriptomic immune profiles were markedly altered between the two groups, with strong signals in CD4+ T cells, inflammatory T cells, dendritic cells, and NK cells. Multiomic signature scores at admission were tightly associated with future clinical deterioration (auROC 1.0). Epigenetic and transcriptional changes in PBMCs reveal early, broad immune dysregulation before typical clinical signs of decompensation are apparent and thus may act as biomarkers to predict future severity in COVID-19.

3.
Sci Rep ; 13(1): 22554, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110534

ABSTRACT

Diagnostic limitations challenge management of clinically indistinguishable acute infectious illness globally. Gene expression classification models show great promise distinguishing causes of fever. We generated transcriptional data for a 294-participant (USA, Sri Lanka) discovery cohort with adjudicated viral or bacterial infections of diverse etiology or non-infectious disease mimics. We then derived and cross-validated gene expression classifiers including: 1) a single model to distinguish bacterial vs. viral (Global Fever-Bacterial/Viral [GF-B/V]) and 2) a two-model system to discriminate bacterial and viral in the context of noninfection (Global Fever-Bacterial/Viral/Non-infectious [GF-B/V/N]). We then translated to a multiplex RT-PCR assay and independent validation involved 101 participants (USA, Sri Lanka, Australia, Cambodia, Tanzania). The GF-B/V model discriminated bacterial from viral infection in the discovery cohort an area under the receiver operator curve (AUROC) of 0.93. Validation in an independent cohort demonstrated the GF-B/V model had an AUROC of 0.84 (95% CI 0.76-0.90) with overall accuracy of 81.6% (95% CI 72.7-88.5). Performance did not vary with age, demographics, or site. Host transcriptional response diagnostics distinguish bacterial and viral illness across global sites with diverse endemic pathogens.


Subject(s)
Bacterial Infections , Virus Diseases , Humans , Virus Diseases/diagnosis , Virus Diseases/genetics , Biomarkers , Bacterial Infections/diagnosis , Bacterial Infections/genetics , Cambodia , Australia
4.
medRxiv ; 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37577568

ABSTRACT

Age is among the strongest risk factors for severe outcomes from SARS-CoV-2 infection. We sought to evaluate associations between age and both mucosal and systemic host responses to SARS-CoV-2 infection. We profiled the upper respiratory tract (URT) and peripheral blood transcriptomes of 201 participants (age range of 1 week to 83 years), including 137 non-hospitalized individuals with mild SARS-CoV-2 infection and 64 uninfected individuals. Among uninfected children and adolescents, young age was associated with upregulation of innate and adaptive immune pathways within the URT, suggesting that young children are primed to mount robust mucosal immune responses to exogeneous respiratory pathogens. SARS-CoV-2 infection was associated with broad induction of innate and adaptive immune responses within the URT of children and adolescents. Peripheral blood responses among SARS-CoV-2-infected children and adolescents were dominated by interferon pathways, while upregulation of myeloid activation, inflammatory, and coagulation pathways was observed only in adults. Systemic symptoms among SARS-CoV-2-infected subjects were associated with blunted innate and adaptive immune responses in the URT and upregulation of many of these same pathways within peripheral blood. Finally, within individuals, robust URT immune responses were correlated with decreased peripheral immune activation, suggesting that effective immune responses in the URT may promote local viral control and limit systemic immune activation and symptoms. These findings demonstrate that there are differences in immune responses to SARS-CoV-2 across the lifespan, including between young children and adolescents, and suggest that these varied host responses contribute to observed differences in the clinical presentation of SARS-CoV-2 infection by age. One Sentence Summary: Age is associated with distinct upper respiratory and peripheral blood transcriptional responses among children and adults with SARS-CoV-2 infection.

5.
J Clin Invest ; 133(19)2023 10 02.
Article in English | MEDLINE | ID: mdl-37561585

ABSTRACT

Lung inflammation is a hallmark of Coronavirus disease 2019 (COVID-19) in patients who are severely ill, and the pathophysiology of disease is thought to be immune mediated. Mast cells (MCs) are polyfunctional immune cells present in the airways, where they respond to certain viruses and allergens and often promote inflammation. We observed widespread degranulation of MCs during acute and unresolved airway inflammation in SARS-CoV-2-infected mice and nonhuman primates. Using a mouse model of MC deficiency, MC-dependent interstitial pneumonitis, hemorrhaging, and edema in the lung were observed during SARS-CoV-2 infection. In humans, transcriptional changes in patients requiring oxygen supplementation also implicated cells with a MC phenotype in severe disease. MC activation in humans was confirmed through detection of MC-specific proteases, including chymase, the levels of which were significantly correlated with disease severity and with biomarkers of vascular dysregulation. These results support the involvement of MCs in lung tissue damage during SARS-CoV-2 infection in animal models and the association of MC activation with severe COVID-19 in humans, suggesting potential strategies for intervention.


Subject(s)
COVID-19 , Humans , Animals , COVID-19/pathology , Mast Cells/pathology , SARS-CoV-2 , Lung/pathology , Inflammation/pathology
6.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425926

ABSTRACT

Variations in DNA methylation patterns in human tissues have been linked to various environmental exposures and infections. Here, we identified the DNA methylation signatures associated with multiple exposures in nine major immune cell types derived from peripheral blood mononuclear cells (PBMCs) at single-cell resolution. We performed methylome sequencing on 111,180 immune cells obtained from 112 individuals who were exposed to different viruses, bacteria, or chemicals. Our analysis revealed 790,662 differentially methylated regions (DMRs) associated with these exposures, which are mostly individual CpG sites. Additionally, we integrated methylation and ATAC-seq data from same samples and found strong correlations between the two modalities. However, the epigenomic remodeling in these two modalities are complementary. Finally, we identified the minimum set of DMRs that can predict exposures. Overall, our study provides the first comprehensive dataset of single immune cell methylation profiles, along with unique methylation biomarkers for various biological and chemical exposures.

8.
Cell Rep Methods ; 3(2): 100395, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36936082

ABSTRACT

Assays detecting blood transcriptome changes are studied for infectious disease diagnosis. Blood-based RNA alternative splicing (AS) events, which have not been well characterized in pathogen infection, have potential normalization and assay platform stability advantages over gene expression for diagnosis. Here, we present a computational framework for developing AS diagnostic biomarkers. Leveraging a large prospective cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and whole-blood RNA sequencing (RNA-seq) data, we identify a major functional AS program switch upon viral infection. Using an independent cohort, we demonstrate the improved accuracy of AS biomarkers for SARS-CoV-2 diagnosis compared with six reported transcriptome signatures. We then optimize a subset of AS-based biomarkers to develop microfluidic PCR diagnostic assays. This assay achieves nearly perfect test accuracy (61/62 = 98.4%) using a naive principal component classifier, significantly more accurate than a gene expression PCR assay in the same cohort. Therefore, our RNA splicing computational framework enables a promising avenue for host-response diagnosis of infection.


Subject(s)
COVID-19 , Communicable Diseases , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Alternative Splicing/genetics , COVID-19 Testing , RNA , Prospective Studies , Biomarkers/analysis
9.
Anal Chem ; 95(13): 5610-5617, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36961989

ABSTRACT

Antigen tests to detect SARS-CoV-2 have emerged as a promising rapid diagnostic method for COVID-19, but they are unable to differentiate between variants of concern (VOCs). Here, we report a rapid point-of-care test (POC-T), termed CoVariant-SPOT, that uses a set of antibodies that are either tolerant or intolerant to spike protein mutations to identify the likely SARS-CoV-2 strain concurrent with COVID-19 diagnosis using antibodies targeting the nucleocapsid protein. All reagents are incorporated into a portable, multiplexed, and sensitive diagnostic platform built upon a nonfouling polymer brush. To validate CoVariant-SPOT, we tested recombinant SARS-CoV-2 proteins, inactivated viruses, and nasopharyngeal swab samples from COVID-19 positive and negative individuals and showed that CoVariant-SPOT can readily distinguish between two VOCs: Delta and Omicron. We believe that CoVariant-SPOT can serve as a valuable adjunct to next-generation sequencing to rapidly identify variants using a scalable and deployable POC-T, thereby enhancing community surveillance efforts worldwide and informing treatment selection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Point-of-Care Systems , COVID-19 Testing , Antibodies
10.
PLoS One ; 18(1): e0280602, 2023.
Article in English | MEDLINE | ID: mdl-36701416

ABSTRACT

Renal transplantation from hepatitis C (HCV) nucleic acid amplification test-positive (NAAT-positive) donors to uninfected recipients has greatly increased the organ donation pool. However, there is concern for adverse outcomes in these recipients due to dysregulated immunologic activation secondary to active inflammation from acute viremia at the time of transplantation. This includes increased rates of cytomegalovirus (CMV) DNAemia and allograft rejection. In this study, we evaluate transcriptional responses in circulating leukocytes to define the character, timing, and resolution of this immune dysregulation and assess for biomarkers of adverse outcomes in transplant patients. We enrolled 67 renal transplant recipients (30 controls, 37 HCV recipients) and performed RNA sequencing on serial samples from one, 3-, and 6-months post-transplant. CMV DNAemia and allograft rejection outcomes were measured. Least absolute shrinkage and selection operator was utilized to develop gene expression classifiers predictive of clinical outcomes. Acute HCV incited a marked transcriptomic response in circulating leukocytes of renal transplant recipients in the acute post-transplant setting, despite the presence of immunosuppression, with 109 genes significantly differentially expressed compared to controls. These HCV infection-associated genes were reflective of antiviral immune pathways and generally resolved by the 3-month timepoint after sustained viral response (SVR) for HCV. Differential gene expression was also noted from patients who developed CMV DNAemia or allograft rejection compared to those who did not, although transcriptomic classifiers could not accurately predict these outcomes, likely due to sample size and variable time-to-event. Acute HCV infection incites evidence of immune activation and canonical antiviral responses in the human host even in the presence of systemic immunosuppression. After treatment of HCV with antiviral therapy and subsequent aviremia, this immune activation resolves. Changes in gene expression patterns in circulating leukocytes are associated with some clinical outcomes, although larger studies are needed to develop accurate predictive classifiers of these events.


Subject(s)
Cytomegalovirus Infections , Hepatitis C , Humans , Hepacivirus/genetics , Tissue Donors , Antiviral Agents/therapeutic use , Kidney , Cytomegalovirus Infections/drug therapy , Transplant Recipients
11.
Cell Genom ; 2(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36465279

ABSTRACT

During pandemics, individuals exhibit differences in risk and clinical outcomes. Here, we developed single-cell high-throughput human in vitro susceptibility testing (scHi-HOST), a method for rapidly identifying genetic variants that confer resistance and susceptibility. We applied this method to influenza A virus (IAV), the cause of four pandemics since the start of the 20th century. scHi-HOST leverages single-cell RNA sequencing (scRNA-seq) to simultaneously assign genetic identity to cells in mixed infections of cell lines of European, African, and Asian origin, reveal associated genetic variants for viral burden, and identify expression quantitative trait loci. Integration of scHi-HOST with human challenge and experimental validation demonstrated that a missense variant in endoplasmic reticulum aminopeptidase 1 (ERAP1; rs27895) increased IAV burden in cells and human volunteers. rs27895 exhibits population differentiation, likely contributing to greater permissivity of cells from African populations to IAV. scHi-HOST is a broadly applicable method and resource for decoding infectious-disease genetics.

12.
Cell Syst ; 13(12): 989-1001.e8, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36549275

ABSTRACT

The identification of a COVID-19 host response signature in blood can increase the understanding of SARS-CoV-2 pathogenesis and improve diagnostic tools. Applying a multi-objective optimization framework to both massive public and new multi-omics data, we identified a COVID-19 signature regulated at both transcriptional and epigenetic levels. We validated the signature's robustness in multiple independent COVID-19 cohorts. Using public data from 8,630 subjects and 53 conditions, we demonstrated no cross-reactivity with other viral and bacterial infections, COVID-19 comorbidities, or confounders. In contrast, previously reported COVID-19 signatures were associated with significant cross-reactivity. The signature's interpretation, based on cell-type deconvolution and single-cell data analysis, revealed prominent yet complementary roles for plasmablasts and memory T cells. Although the signal from plasmablasts mediated COVID-19 detection, the signal from memory T cells controlled against cross-reactivity with other viral infections. This framework identified a robust, interpretable COVID-19 signature and is broadly applicable in other disease contexts. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
COVID-19 , Virus Diseases , Humans , SARS-CoV-2
13.
Sci Rep ; 12(1): 22589, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36585416

ABSTRACT

Using data from a longitudinal viral challenge study, we find that the post-exposure viral shedding and symptom severity are associated with a novel measure of pre-exposure cognitive performance variability (CPV), defined before viral exposure occurs. Each individual's CPV score is computed from data collected from a repeated NeuroCognitive Performance Test (NCPT) over a 3 day pre-exposure period. Of the 18 NCPT measures reported by the tests, 6 contribute materially to the CPV score, prospectively differentiating the high from the low shedders. Among these 6 are the 4 clinical measures digSym-time, digSym-correct, trail-time, and reaction-time, commonly used for assessing cognitive executive functioning. CPV is found to be correlated with stress and also with several genes previously reported to be associated with cognitive development and dysfunction. A perturbation study over the number and timing of NCPT sessions indicates that as few as 5 sessions is sufficient to maintain high association between the CPV score and viral shedding, as long as the timing of these sessions is balanced over the three pre-exposure days. Our results suggest that variations in cognitive function are closely related to immunity and susceptibility to severe infection. Further studying these relationships may help us better understand the links between neurocognitive and neuroimmune systems which is timely in this COVID-19 pandemic era.


Subject(s)
COVID-19 , Respiratory Tract Infections , Humans , Pandemics , Cognition , Reaction Time
14.
Crit Care Med ; 50(12): 1748-1756, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36178298

ABSTRACT

OBJECTIVES: Sepsis causes significant mortality. However, most patients who die of sepsis do not present with severe infection, hampering efforts to deliver early, aggressive therapy. It is also known that the host gene expression response to infection precedes clinical illness. This study seeks to develop transcriptomic models to predict progression to sepsis or shock within 72 hours of hospitalization and to validate previously identified transcriptomic signatures in the prediction of 28-day mortality. DESIGN: Retrospective differential gene expression analysis and predictive modeling using RNA sequencing data. PATIENTS: Two hundred seventy-seven patients enrolled at four large academic medical centers; all with clinically adjudicated infection were considered for inclusion in this study. MEASUREMENTS AND MAIN RESULTS: Sepsis progression was defined as an increase in Sepsis 3 category within 72 hours. Transcriptomic data were generated using RNAseq of whole blood. Least absolute shrinkage and selection operator modeling was used to identify predictive signatures for various measures of disease progression. Four previously identified gene signatures were tested for their ability to predict 28-day mortality. There were no significant differentially expressed genes in 136 subjects with worsened Sepsis 3 category compared with 141 nonprogressor controls. There were 1,178 differentially expressed genes identified when sepsis progression was defined as ICU admission or 28-day mortality. A model based on these genes predicted progression with an area under the curve of 0.71. Validation of previously identified gene signatures to predict sepsis mortality revealed area under the receiver operating characteristic values of 0.70-0.75 and no significant difference between signatures. CONCLUSIONS: Host gene expression was unable to predict sepsis progression when defined by an increase in Sepsis-3 category, suggesting this definition is not a useful framework for transcriptomic prediction methods. However, there was a differential response when progression was defined as ICU admission or death. Validation of previously described signatures predicted 28-day mortality with insufficient accuracy to offer meaningful clinical utility.


Subject(s)
Sepsis , Humans , Retrospective Studies , ROC Curve , Hospitalization , Gene Expression , Prognosis
15.
Sci Rep ; 12(1): 11714, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810186

ABSTRACT

SARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associated with mild or moderate symptoms were already robust and included severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity was marked by upregulation of classical antiviral pathways, including those regulating IRF1 and IRF7, whereas in moderate disease, these classical antiviral signals diminished, suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.


Subject(s)
COVID-19 , Chromatin , Antiviral Agents , COVID-19/genetics , Chromatin/genetics , Humans , Immunoglobulin G/genetics , Leukocytes, Mononuclear , SARS-CoV-2 , Seroconversion , Severity of Illness Index
16.
Health Sci Rep ; 5(4): e554, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35899182

ABSTRACT

Purpose: Several cases of symptomatic reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after full recovery from a prior episode have been reported. As reinfection has become an increasingly common phenomenon, an improved understanding of the risk factors for reinfection and the character and duration of the serological responses to infection and vaccination is critical for managing the coronavirus disease 2019 (COVID-19) pandemic. Methods: We described four cases of SARS-CoV-2 reinfection in individuals representing a spectrum of healthy and immunocompromised states, including (1) a healthy 41-year-old pediatrician, (2) an immunocompromised 31-year-old with granulomatosis with polyangiitis, (3) a healthy 26-year-old pregnant woman, and (4) a 50-year-old with hypertension and hyperlipidemia. We performed confirmatory quantitative reverse transcription-polymerase chain reaction and qualitative immunoglobulin M and quantitative IgG testing on all available patient samples to confirm the presence of infection and serological response to infection. Results: Our analysis showed that patients 1 and 2, a healthy and an immunocompromised patient, both failed to mount a robust serologic response to the initial infection. In contrast, patients 3 and 4, with minimal comorbid disease, both mounted a strong serological response to their initial infection, but were still susceptible to reinfection. Conclusion: Repeat episodes of COVID-19 are capable of occurring in patients regardless of the presence of known risk factors for infection or level of serological response to infection, although this did not trigger critical illness in any instance.

17.
Res Sq ; 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35411343

ABSTRACT

SARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associate with mild or moderate symptoms are already robust and include severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity is marked by upregulation classical antiviral pathways including those regulating IRF1 and IRF7, whereas in moderate disease these classical antiviral signals diminish suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.

18.
JAMA Netw Open ; 5(4): e227299, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35420659

ABSTRACT

Importance: Bacterial and viral causes of acute respiratory illness (ARI) are difficult to clinically distinguish, resulting in the inappropriate use of antibacterial therapy. The use of a host gene expression-based test that is able to discriminate bacterial from viral infection in less than 1 hour may improve care and antimicrobial stewardship. Objective: To validate the host response bacterial/viral (HR-B/V) test and assess its ability to accurately differentiate bacterial from viral infection among patients with ARI. Design, Setting, and Participants: This prospective multicenter diagnostic study enrolled 755 children and adults with febrile ARI of 7 or fewer days' duration from 10 US emergency departments. Participants were enrolled from October 3, 2014, to September 1, 2019, followed by additional enrollment of patients with COVID-19 from March 20 to December 3, 2020. Clinical adjudication of enrolled participants identified 616 individuals as having bacterial or viral infection. The primary analysis cohort included 334 participants with high-confidence reference adjudications (based on adjudicator concordance and the presence of an identified pathogen confirmed by microbiological testing). A secondary analysis of the entire cohort of 616 participants included cases with low-confidence reference adjudications (based on adjudicator discordance or the absence of an identified pathogen in microbiological testing). Thirty-three participants with COVID-19 were included post hoc. Interventions: The HR-B/V test quantified the expression of 45 host messenger RNAs in approximately 45 minutes to derive a probability of bacterial infection. Main Outcomes and Measures: Performance characteristics for the HR-B/V test compared with clinical adjudication were reported as either bacterial or viral infection or categorized into 4 likelihood groups (viral very likely [probability score <0.19], viral likely [probability score of 0.19-0.40], bacterial likely [probability score of 0.41-0.73], and bacterial very likely [probability score >0.73]) and compared with procalcitonin measurement. Results: Among 755 enrolled participants, the median age was 26 years (IQR, 16-52 years); 360 participants (47.7%) were female, and 395 (52.3%) were male. A total of 13 participants (1.7%) were American Indian, 13 (1.7%) were Asian, 368 (48.7%) were Black, 131 (17.4%) were Hispanic, 3 (0.4%) were Native Hawaiian or Pacific Islander, 297 (39.3%) were White, and 60 (7.9%) were of unspecified race and/or ethnicity. In the primary analysis involving 334 participants, the HR-B/V test had sensitivity of 89.8% (95% CI, 77.8%-96.2%), specificity of 82.1% (95% CI, 77.4%-86.6%), and a negative predictive value (NPV) of 97.9% (95% CI, 95.3%-99.1%) for bacterial infection. In comparison, the sensitivity of procalcitonin measurement was 28.6% (95% CI, 16.2%-40.9%; P < .001), the specificity was 87.0% (95% CI, 82.7%-90.7%; P = .006), and the NPV was 87.6% (95% CI, 85.5%-89.5%; P < .001). When stratified into likelihood groups, the HR-B/V test had an NPV of 98.9% (95% CI, 96.1%-100%) for bacterial infection in the viral very likely group and a positive predictive value of 63.4% (95% CI, 47.2%-77.9%) for bacterial infection in the bacterial very likely group. The HR-B/V test correctly identified 30 of 33 participants (90.9%) with acute COVID-19 as having a viral infection. Conclusions and Relevance: In this study, the HR-B/V test accurately discriminated bacterial from viral infection among patients with febrile ARI and was superior to procalcitonin measurement. The findings suggest that an accurate point-of-need host response test with high NPV may offer an opportunity to improve antibiotic stewardship and patient outcomes.


Subject(s)
Bacterial Infections , COVID-19 , Virus Diseases , Adult , Bacteria , Bacterial Infections/drug therapy , COVID-19/diagnosis , Child , Female , Fever/diagnosis , Gene Expression , Humans , Male , Procalcitonin , Virus Diseases/diagnosis
19.
Clin Infect Dis ; 74(9): 1525-1533, 2022 05 03.
Article in English | MEDLINE | ID: mdl-34374761

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA (vRNA) is detected in the bloodstream of some patients with coronavirus disease 2019 (COVID-19), but it is not clear whether this RNAemia reflects viremia (ie, virus particles) and how it relates to host immune responses and outcomes. METHODS: SARS-CoV-2 vRNA was quantified in plasma samples from observational cohorts of 51 COVID-19 patients including 9 outpatients, 19 hospitalized (non-intensive care unit [ICU]), and 23 ICU patients. vRNA levels were compared with cross-sectional indices of COVID-19 severity and prospective clinical outcomes. We used multiple imaging methods to visualize virions in plasma. RESULTS: SARS-CoV-2 vRNA was detected in plasma of 100%, 52.6%, and 11.1% of ICU, non-ICU, and outpatients, respectively. Virions were detected in plasma pellets using electron tomography and immunostaining. Plasma vRNA levels were significantly higher in ICU > non-ICU > outpatients (P < .0001); for inpatients, plasma vRNA levels were strongly associated with higher World Health Organization (WHO) score at admission (P = .01), maximum WHO score (P = .002), and discharge disposition (P = .004). A plasma vRNA level >6000 copies/mL was strongly associated with mortality (hazard ratio, 10.7). Levels of vRNA were significantly associated with several inflammatory biomarkers (P < .01) but not with plasma neutralizing antibody titers (P = .8). CONCLUSIONS: Visualization of virus particles in plasma indicates that SARS-CoV-2 RNAemia is due, at least in part, to viremia. The levels of SARS-CoV-2 RNAemia correlate strongly with disease severity, patient outcome, and specific inflammatory biomarkers but not with neutralizing antibody titers.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Biomarkers , COVID-19/diagnosis , Cross-Sectional Studies , Humans , Prospective Studies , RNA, Viral , SARS-CoV-2 , Viremia
20.
PLoS One ; 16(12): e0261385, 2021.
Article in English | MEDLINE | ID: mdl-34905580

ABSTRACT

OBJECTIVES: Compare three host response strategies to distinguish bacterial and viral etiologies of acute respiratory illness (ARI). METHODS: In this observational cohort study, procalcitonin, a 3-protein panel (CRP, IP-10, TRAIL), and a host gene expression mRNA panel were measured in 286 subjects with ARI from four emergency departments. Multinomial logistic regression and leave-one-out cross validation were used to evaluate the protein and mRNA tests. RESULTS: The mRNA panel performed better than alternative strategies to identify bacterial infection: AUC 0.93 vs. 0.83 for the protein panel and 0.84 for procalcitonin (P<0.02 for each comparison). This corresponded to a sensitivity and specificity of 92% and 83% for the mRNA panel, 81% and 73% for the protein panel, and 68% and 87% for procalcitonin, respectively. A model utilizing all three strategies was the same as mRNA alone. For the diagnosis of viral infection, the AUC was 0.93 for mRNA and 0.84 for the protein panel (p<0.05). This corresponded to a sensitivity and specificity of 89% and 82% for the mRNA panel, and 85% and 62% for the protein panel, respectively. CONCLUSIONS: A gene expression signature was the most accurate host response strategy for classifying subjects with bacterial, viral, or non-infectious ARI.


Subject(s)
Bacteria/isolation & purification , Bacterial Infections/diagnosis , Respiratory Tract Infections/epidemiology , Virus Diseases/diagnosis , Viruses/isolation & purification , Adult , Bacterial Infections/complications , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Biomarkers/metabolism , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Case-Control Studies , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Diagnosis, Differential , Emergency Service, Hospital , Female , Follow-Up Studies , Humans , Male , Middle Aged , Procalcitonin/genetics , Procalcitonin/metabolism , Prognosis , ROC Curve , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Respiratory Tract Infections/etiology , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/pathology , Retrospective Studies , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , United States/epidemiology , Virus Diseases/complications , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...