Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transbound Emerg Dis ; 69(2): 297-307, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33400387

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an emerging virus that has caused significant human morbidity and mortality since its detection in late 2019. With the rapid emergence has come an unprecedented programme of vaccine development with at least 300 candidates under development. Ferrets have proven to be an appropriate animal model for testing safety and efficacy of SARS-CoV-2 vaccines due to quantifiable virus shedding in nasal washes and oral swabs. Here, we outline our efforts early in the SARS-CoV-2 outbreak to propagate and characterize an Australian isolate of the virus in vitro and in an ex vivo model of human airway epithelium, as well as to demonstrate the susceptibility of domestic ferrets (Mustela putorius furo) to SARS-CoV-2 infection following intranasal challenge.


Subject(s)
COVID-19 , Ferrets , Animals , Australia , COVID-19/veterinary , COVID-19 Vaccines , Humans , SARS-CoV-2
2.
ILAR J ; 62(1-2): 232-237, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34157067

ABSTRACT

This case report discusses Type I hypersensitivity in ferrets following exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inoculum, observed during a study investigating the efficacy of candidate COVID-19 vaccines. Following a comprehensive internal root-cause investigation, it was hypothesized that prior prime-boost immunization of ferrets with a commercial canine C3 vaccine to protect against the canine distemper virus had resulted in primary immune response to fetal bovine serum (FBS) in the C3 preparation. Upon intranasal exposure to SARS-CoV-2 virus cultured in medium containing FBS, an allergic airway response occurred in 6 out of 56 of the ferrets. The 6 impacted ferrets were randomly dispersed across study groups, including different COVID-19 vaccine candidates, routes of vaccine candidate administration, and controls (placebo). The root-cause investigation and subsequent analysis determined that the allergic reaction was unrelated to the COVID-19 vaccine candidates under evaluation. Histological assessment suggested that the allergic response was characterized by eosinophilic airway disease; increased serum immunoglobulin levels reactive to FBS further suggested this response was caused by immune priming to FBS present in the C3 vaccine. This was further supported by in vivo studies demonstrating ferrets administered diluted FBS also presented clinical signs consistent with a hyperallergic response, while clinical signs were absent in ferrets that received a serum-free SARS-CoV-2 inoculum. It is therefore recommended that vaccine studies in higher order animals should consider the impact of welfare vaccination and use serum-free inoculum whenever possible.


Subject(s)
COVID-19 , Hypersensitivity, Immediate , Viral Vaccines , Animals , COVID-19 Vaccines , Dogs , Ferrets , SARS-CoV-2
3.
NPJ Vaccines ; 6(1): 67, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33972565

ABSTRACT

Vaccines against SARS-CoV-2 are likely to be critical in the management of the ongoing pandemic. A number of candidates are in Phase III human clinical trials, including ChAdOx1 nCoV-19 (AZD1222), a replication-deficient chimpanzee adenovirus-vectored vaccine candidate. In preclinical trials, the efficacy of ChAdOx1 nCoV-19 against SARS-CoV-2 challenge was evaluated in a ferret model of infection. Groups of ferrets received either prime-only or prime-boost administration of ChAdOx1 nCoV-19 via the intramuscular or intranasal route. All ChAdOx1 nCoV-19 administration combinations resulted in significant reductions in viral loads in nasal-wash and oral swab samples. No vaccine-associated adverse events were observed associated with the ChAdOx1 nCoV-19 candidate, with the data from this study suggesting it could be an effective and safe vaccine against COVID-19. Our study also indicates the potential for intranasal administration as a way to further improve the efficacy of this leading vaccine candidate.

SELECTION OF CITATIONS
SEARCH DETAIL
...