Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776137

ABSTRACT

Plant-microbe interaction research has had a transformative trajectory, from individual microbial isolate studies to comprehensive analyses of plant microbiomes within the broader phytobiome framework. Acknowledging the indispensable role of plant microbiomes in shaping plant health, agriculture, and ecosystem resilience, we underscore the urgent need for sustainable crop production strategies in the face of contemporary challenges. We discuss how the synergies between advancements in 'omics technologies and artificial intelligence can help advance the profound potential of plant microbiomes. Furthermore, we propose a multifaceted approach encompassing translational considerations, transdisciplinary research initiatives, public-private partnerships, regulatory policy development, and pragmatic expectations for the practical application of plant microbiome knowledge across diverse agricultural landscapes. We advocate for strategic collaboration and intentional transdisciplinary efforts to unlock the benefits offered by plant microbiomes and address pressing global issues in food security. By emphasizing a nuanced understanding of plant microbiome complexities and fostering realistic expectations, we encourage the scientific community to navigate the transformative journey from discoveries in the laboratory to field applications. As companies specializing in agricultural microbes and microbiomes undergo shifts, we highlight the necessity of understanding how to approach sustainable agriculture with site-specific management solutions. While cautioning against over-promising, we underscore the excitement of exploring the many impacts of microbiome-plant interactions. We emphasize the importance of collaborative endeavors with societal partners to accelerate our collective capacity to harness the diverse and yet-to-be-discovered beneficial activities of plant microbiomes.

2.
Antonie Van Leeuwenhoek ; 116(7): 615-630, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37138159

ABSTRACT

Lysinibacillus is a bacterial genus that has generated recent interest for its biotechnological potential in agriculture. Strains belonging to this group are recognized for their mosquitocidal and bioremediation activity. However, in recent years some reports indicate its importance as plant growth promoting rhizobacteria (PGPR). This research sought to provide evidence of the PGP activity of Lysinibacillus spp. and the role of the indole-3-acetic acid (IAA) production associated with this activity. Twelve Lysinibacillus spp. strains were evaluated under greenhouse conditions, six of which increased the biomass and root architecture of corn plants. In most cases, growth stimulation was evident at 108 CFU/mL inoculum concentration. All strains produced IAA with high variation between them (20-70 µg/mL). The bioinformatic identification of predicted genes associated with IAA production allowed the detection of the indole pyruvic acid pathway to synthesize IAA in all strains; additionally, genes for a tryptamine pathway were detected in two strains. Extracellular filtrates from all strain's cultures increased the corn coleoptile length in an IAA-similar concentration pattern, which demonstrates the filtrates had an auxin-like effect on plant tissue. Five of the six strains that previously showed PGPR activity in corn also promoted the growth of Arabidopsis thaliana (col 0). These strains induced changes in root architecture of Arabidopsis mutant plants (aux1-7/axr4-2), the partial reversion of mutant phenotype indicated the role of IAA on plant growth. This work provided solid evidence of the association of Lysinibacillus spp. IAA production with their PGP activity, which constitutes a new approach for this genus. These elements contribute to the biotechnological exploration of this bacterial genus for agricultural biotechnology.


Subject(s)
Arabidopsis , Bacillaceae , Indoleacetic Acids/metabolism , Plant Development , Bacteria/metabolism , Bacillaceae/genetics , Bacillaceae/metabolism , Arabidopsis/metabolism , Plants/metabolism , Plant Roots/microbiology
3.
Antonie Van Leeuwenhoek ; 112(8): 1161-1167, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30820713

ABSTRACT

A strain of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore forming bacterium was originally isolated from rhizospheric soil of a pepper plant when screening and bioprospecting for plant beneficial microorganisms. Phylogenetic analysis of the 16S rRNA gene sequences indicated that this strain, PB300T, is closely related to Lysinibacillus macroides DMS 54T (99.6%) and Lysinibacillus xylanilyticus DSM 23493T (99.4%). In phenotypic characterisation, the novel strain was found to grow between 15 and 40 °C and tolerate up to 10% (w/v) NaCl. Furthermore, the strain was found to grow in media with pH 5 to 10 (optimal growth at pH 7.0). The predominant cellular fatty acids were observed to be iso-C15 : 0 (56.6 %), anteiso-C15 : 0 (14.6%), C16 :1ω7C alcohol (9.3%) and C16 : 0 (7.1%). The cell wall peptidoglycan contains lysine-aspartic acid, as in its close relatives. A draft genome was completed and the DNA G + C content was determined to be 37.5% (mol content). A phylogenomic analysis of the core genome of the new strain and 5 closely related type strains of the genus Lysinibacillus revealed that this strain formed a distinct monophyletic clade with the nearest neighbour being Lysinibacillus boronitolerans. DNA-DNA relatedness studies using in silico DNA-DNA hybridizations (DDH) showed relationships for the new strain were below the species threshold of 70%. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Lysinibacillus, for which the name Lysinibacillus capsici sp. nov. is proposed, with type strain PB300T (= NRRL B-65515T, = CCUG 72241T).


Subject(s)
Bacillaceae/classification , Bacillaceae/isolation & purification , Soil Microbiology , Bacillaceae/chemistry , Bacillaceae/genetics , Bacterial Typing Techniques , Base Composition , Capsicum/growth & development , Cell Wall/chemistry , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Nucleic Acid Hybridization , Peptidoglycan/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizosphere , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...