Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Ecology ; 88(9): 2364-72, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17918413

ABSTRACT

Ecologists commonly use grouped or clustered count data to estimate temporal trends in counts, abundance indices, or abundance. For example, the U.S. Breeding Bird Survey data represent multiple counts of birds from within each of multiple, spatially defined routes. Despite a reliance on grouped counts, analytical methods for prospectively estimating precision of trend estimates or statistical power to detect trends that explicitly acknowledge the characteristics of grouped count data are undescribed. These characteristics include the fact that the sampling variance is an increasing function of the mean, and that sampling and group-level variance estimates are generally estimated on different scales (the sampling and log scales, respectively). We address these issues for repeated sampling of a single population using an analytical approach that has the flavor of a generalized linear mixed model, specifically that of a negative binomial-distributed count variable with random group effects. The count mean, including grand intercept, trend, and random group effects, is modeled linearly on the log scale, while sampling variance of the mean is estimated on the log scale via the delta method. Results compared favorably with those derived using Monte Carlo simulations. For example, at trend = 5% per temporal unit, differences in standard errors and in power were modest relative to those estimated by simulation (< or = /11/% and < or = /16/%, respectively), with relative differences among power estimates decreasing to < or = /7/% when power estimated by simulations was > or = 0.50. Similar findings were obtained using data from nine surveys of fingernail clams in the Mississippi River. The proposed method is suggested (1) where simulations are not practical and relative precision or power is desired, or (2) when multiple precision or power calculations are required and where the accuracy of a fraction of those calculations will be confirmed using simulations.


Subject(s)
Bivalvia/growth & development , Models, Biological , Models, Statistical , Animals , Cluster Analysis , Computer Simulation , Population Dynamics , Population Growth , Reproducibility of Results , Sensitivity and Specificity
2.
J Occup Environ Med ; 46(8): 837-46, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15300136

ABSTRACT

The observed to expected episodes of care experience of 652 employees at a fluorochemical (perfluorooctanesulfonyl fluoride) production facility was compared with 659 film plant (nonfluorochemical) employees at the same site (Decatur, AL). Episodes of care were defined by a hierarchical analysis of health claims data from 1993 through 1998. The age- and sex-adjusted expected number of episodes of care was calculated from the company's U.S. manufacturing workforce. For a priori interests, the observed to expected episodes of care ratios were comparable for fluorochemical and film plant employees for liver tumors or diseases, bladder cancer, thyroid and lipid metabolism disorders, and reproductive, pregnancy, and perinatal disorders and higher for biliary tract disorders and cystitis recurrence. Non-a priori associations among the fluorochemical plant workers included benign colon polyps, malignant colorectal tumors, and malignant melanoma.


Subject(s)
Chemical Industry , Episode of Care , Occupational Diseases/epidemiology , Occupational Exposure , Adult , Alabama/epidemiology , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/toxicity , Caprylates/analysis , Caprylates/toxicity , Female , Fluorides/analysis , Fluorides/toxicity , Fluorocarbons/analysis , Fluorocarbons/toxicity , Humans , Male , Middle Aged , Occupational Diseases/chemically induced , Occupational Exposure/statistics & numerical data , Workplace
3.
AIHA J (Fairfax, Va) ; 64(5): 651-9, 2003.
Article in English | MEDLINE | ID: mdl-14521435

ABSTRACT

This investigation randomly sampled a fluorochemical manufacturing employee population to determine the distribution of serum fluorochemical levels according to employees' jobs and work areas. Previous analyses of medical surveillance data have not shown significant associations between fluorochemical production employees' clinical chemistry and hematology tests and their serum PFOS and perfluorooctanoate (PFOA, C(7)F(15)COO(-)) concentrations, but may have been subject to nonparticipation bias. A random sample of the on-site film plant employee population, where fluorochemicals are not produced, determined their serum concentrations also. Of the 232 employees randomly selected for serum sampling, 186 (80%) employees participated (n=126 chemical plant; n=60 film plant). Sera samples were extracted using an ion-pairing extraction procedure and were quantitatively analyzed for seven fluorochemicals using high-pressure liquid chromatography electrospray tandem mass spectrometry methods. Geometric means (in parts per million) and 95% confidence intervals (in parentheses) of the random sample of 126 chemical plant employees were: PFOS 0.941 (0.787-1.126); PFOA 0.899 (0.722-1.120); perfluorohexanesulfonate 0.180 (0.145-0.223); N-ethyl perfluorooctanesulfonamidoacetate 0.008 (0.006-0.011); N-methyl perfluorooctanesulfonamidoacetate 0.081 (0.067-0.098); perfluorooctanesulfonamide 0.013 (0.009-0.018); and perfluorooctanesulfonamidoacetate 0.022 (0.018-0.029). These geometric means were approximately one order of magnitude higher than those observed for the film plant employees.


Subject(s)
Alkanesulfonic Acids/analysis , Caprylates/analysis , Environmental Monitoring/methods , Fluorides/analysis , Fluorocarbons/analysis , Occupational Exposure , Chemical Industry , Chromatography, High Pressure Liquid , Mass Spectrometry , Occupations , Random Allocation , Sensitivity and Specificity , Workplace
4.
J Occup Environ Med ; 45(3): 260-70, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12661183

ABSTRACT

Perfluorooctanesulfonyl fluoride (POSF, C8F17SO2F) is used to create applications for surfactants and paper, packaging, and surface (e.g., carpets, textiles) protectants. Such POSF-based products or their residuals may degrade or metabolize to PFOS (C8F17SO3-). PFOS concentrates in liver and serum and results in hypolipidemia as an early effect of cumulative dosages. Male and female employees of two perfluorooctanyl-manufacturing locations (Antwerp, Belgium and Decatur, Alabama) participated in a periodic medical surveillance program that included hematology, clinical chemistry, thyroid hormone, and urinalysis testing. Serum concentrations of PFOS and perfluorooctanoate (PFOA, C7F15CO2-, used as a fluoropolymer emulsifier) were measured via mass spectrometry methods. The mean serum PFOS and PFOA concentrations for 263 Decatur employees were 1.32 parts per million (ppm; geometric mean 0.91, range 0.06-10.06 ppm) and 1.78 ppm (geometric mean 1.13, range 0.04-12.70 ppm), respectively. Mean concentrations were approximately 50% lower among 255 Antwerp workers. Adjusting for potential confounding factors, there were no substantial changes in hematological, lipid, hepatic, thyroid, or urinary parameters consistent with the known toxicological effects of PFOS or PFOA in cross-sectional or longitudinal analyses of the workers' measured serum fluorochemical concentrations.


Subject(s)
Alkanesulfonic Acids/blood , Caprylates/blood , Fluorocarbons/blood , Occupational Exposure , Occupational Health , Alkaline Phosphatase/blood , Belgium/epidemiology , Confounding Factors, Epidemiologic , Cross-Sectional Studies , Female , Humans , Male , Population Surveillance , Seroepidemiologic Studies , Thyroid Function Tests
SELECTION OF CITATIONS
SEARCH DETAIL