Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun Health ; 15: 100265, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34589771

ABSTRACT

Microglia are tissue-resident macrophages of the central nervous system (CNS), and important for CNS development and homeostasis. In the adult CNS, microglia monitor environmental changes and react to tissue damage, cellular debris, and pathogens. Here, we present a gene expression profile of purified microglia isolated from the rhesus macaque, a non-human primate, that consists of 666 transcripts. The macaque microglia transcriptome was intersected with the transcriptional programs of microglia from mouse, zebrafish, and human CNS tissues, to determine (dis)similarities. This revealed an extensive overlap of 342 genes between the transcriptional profile of macaque and human microglia, and showed that the gene expression profile of zebrafish is most distant when compared to other species. Furthermore, an evolutionair core based on the overlapping gene expression signature from all four species was identified. This study presents a macaque microglia transcriptomics profile, and identifies a gene expression program in microglia that is preserved across species, underscoring their CNS-tailored tissue macrophage functions as innate immune cells with CNS-surveilling properties.

2.
Neurochem Int ; 142: 104924, 2021 01.
Article in English | MEDLINE | ID: mdl-33248205

ABSTRACT

As tissue-resident macrophages of the brain, microglia are increasingly considered as cellular targets for therapeutical intervention. Innate immune responses in particular have been implicated in central nervous system (CNS) infections, neuro-oncology, neuroinflammatory and neurodegenerative diseases. We here review the impact of 'nature and nurture' on microglial innate immune responses and summarize documented tissue-specific adaptations. Overall, such adaptations are associated with regulatory processes rather than with overt differences in the expressed repertoire of activating receptors of different tissue-resident macrophages. Microglial responses are characterized by slower kinetics, by a more persistent nature and by a differential usage of downstream enzymes and accessory receptors. We further consider factors like aging, previous exposure to inflammatory stimuli, and differences in the microenvironment that can modulate innate immune responses. The long-life span of microglia in the metabolically active CNS renders them susceptible to the phenomenon of 'inflammaging', and major challenges lie in the unraveling of the factors that underlie age-related alterations in microglial behavior.


Subject(s)
Brain/immunology , Immunity, Innate/immunology , Inflammation Mediators/immunology , Microglia/immunology , Neurodegenerative Diseases/immunology , Animals , Brain/metabolism , Humans , Inflammation Mediators/metabolism , Microglia/metabolism , Neurodegenerative Diseases/metabolism
3.
J Neurovirol ; 23(2): 250-259, 2017 04.
Article in English | MEDLINE | ID: mdl-27882497

ABSTRACT

HIV in the central nervous system (CNS) mainly infects microglial cells which are known to express toll-like receptors (TLRs). This paper aimed to study the role of soluble TLR2 (sTLR2), sTLR4, and other inflammatory markers in cerebrospinal fluid (CSF) in HIV/Simian immunodeficiency virus (SIV)-related neurological sequelae. We determined sTLR2 and sTLR4 levels in CSF and serum/plasma of SIV-infected rhesus macaques with and without neurological sequelae, as well as in HIV-infected patients with and without cognitive impairments and Alzheimer's disease (AD) patients and matched controls. CSF cytokines and chemokines levels were analyzed in macaques as markers of neuroinflammation, while neopterin and S100B CSF concentrations were measured in HIV-infected patients as microglial and astrocyte marker, respectively. We found detectable levels of sTLR2 and sTLR4 in CSF of macaques and humans. Furthermore, CSF sTLR2 and sTLR4 concentrations were higher in SIV-infected macaques with neurological sequelae compared to those without neurological complications (p = 0.0003 and p = 0.0006, respectively). CSF IL-8 and monocyte chemoattractant protein-1 (MCP-1) levels were elevated in macaques with neurological sequelae, and a positive correlation was found between CSF levels of sTLR2/4 and IL-8 and MCP-1. Also in humans, elevated CSF sTLR4 levels were found in HIV-infected patients with cognitive impairments compared to HIV-infected patients with normal cognition (p = 0.019). Unlike CSF S100B levels, neopterin correlated positively with sTLR2 and sTLR4. No difference was found in plasma and CSF sTLR2 and sTLR4 levels between AD patients and control subjects (p = 0.26). In conclusion, CSF sTLR2 and sTLR4 may play a role in HIV/SIV-related neuroinflammation and subsequent neuropathology.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , HIV Infections/cerebrospinal fluid , Simian Acquired Immunodeficiency Syndrome/cerebrospinal fluid , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology , Adult , Alzheimer Disease/blood , Alzheimer Disease/complications , Alzheimer Disease/virology , Animals , Astrocytes/immunology , Astrocytes/pathology , Astrocytes/virology , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Case-Control Studies , Chemokine CCL2/cerebrospinal fluid , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Cognitive Dysfunction/blood , Cognitive Dysfunction/complications , Cognitive Dysfunction/virology , Female , Gene Expression , HIV/immunology , HIV/pathogenicity , HIV Infections/blood , HIV Infections/complications , HIV Infections/virology , Humans , Interleukin-8/cerebrospinal fluid , Interleukin-8/genetics , Interleukin-8/immunology , Macaca mulatta , Male , Microglia/immunology , Microglia/pathology , Microglia/virology , Middle Aged , Neopterin/cerebrospinal fluid , Neopterin/genetics , Neopterin/immunology , S100 Calcium Binding Protein beta Subunit/cerebrospinal fluid , S100 Calcium Binding Protein beta Subunit/genetics , S100 Calcium Binding Protein beta Subunit/immunology , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/pathogenicity , Solubility , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics
4.
Clin Exp Immunol ; 174(1): 161-71, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23750720

ABSTRACT

Macaques provide important animal models in biomedical research into infectious and chronic inflammatory disease. Therefore, a proper understanding of the similarities and differences in immune function between macaques and humans is needed for adequate interpretation of the data and translation to the human situation. Dendritic cells are important as key regulators of innate and adaptive immune responses. Using a new whole blood assay we investigated functional characteristics of blood plasmacytoid dendritic cells (pDC), myeloid dendritic cells (mDC) and monocytes in rhesus macaques by studying induction of activation markers and cytokine expression upon Toll-like receptor (TLR) stimulation. In a head-to-head comparison we observed that rhesus macaque venous blood contained relatively lower numbers of pDC than human venous blood, while mDC and monocytes were present at similar percentages. In contrast to humans, pDC in rhesus macaques expressed the interleukin (IL)-12p40 subunit in response to TLR-7/8 as well as TLR-9 stimulation. Expression of IL-12p40 was confirmed by using different monoclonal antibodies and by reverse transcription-polymerase chain reaction (RT-PCR). Both in humans and rhesus macaques, TLR-4 stimulation induced IL-12p40 expression in mDC and monocytes, but not in pDC. The data show that, in contrast to humans, pDC in macaques are able to express IL-12p40, which could have consequences for evaluation of human vaccine candidates and viral infection.


Subject(s)
Dendritic Cells/immunology , Interleukin-12 Subunit p40/biosynthesis , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/blood , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/blood , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/blood , Animals , Dendritic Cells/metabolism , Humans , Interleukin-12 Subunit p40/blood , Interleukin-12 Subunit p40/genetics , Macaca mulatta
SELECTION OF CITATIONS
SEARCH DETAIL
...