Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Methods Mol Biol ; 2677: 221-231, 2023.
Article in English | MEDLINE | ID: mdl-37464245

ABSTRACT

The fetal gonad contains a great variety of differentiating cell populations, of which germ cells make up a relatively small percentage. In order to study germ cell-specific gene and protein expression, as well as determine direct effects of signaling molecules, it is necessary to prepare enriched populations of germ cells and maintain them in culture for several hours to multiple days. The protocols in this chapter are designed to provide a guide for the isolation or enrichment of primordial germ cells (from 9.5 days post coitum (dpc) to 18.5 dpc) by flow cytometry (Subheading 3.1) or magnetic sorting (Subheading 3.2), followed by feeder-free primary germ cell culture (Subheading 3.3).


Subject(s)
Fetus , Germ Cells , Mice , Animals , Germ Cells/metabolism , Culture Techniques , Flow Cytometry , Gonads
2.
Genesis ; 61(1-2): e23511, 2023 03.
Article in English | MEDLINE | ID: mdl-36693128

ABSTRACT

Germline-specific Cre lines are useful for analyses of primordial germ cell, spermatogonial and oogonial development, but also for whole-body deletions when transmitted through subsequent generations. Several germ cell specific Cre mouse strains exist, with various degrees of specificity, efficiency, and temporal activation. Here, we describe the CRISPR/Cas9 targeted insertion of an improved Cre (iCre) sequence in-frame at the 3' end of the Ddx4 locus to generate the Ddx4-P2A-iCre allele. Our functional assessment of this new allele, designated Ddx4iCreJoBo , reveals that Cre activity begins in PGCs from at least E10.5, and that it achieves higher efficiency for early gonadal (E10.5-12.5) germline deletion when compared to the inducible Oct4CreERT2 line. We found the Ddx4iCreJoBo allele to be hypomorphic for Ddx4 expression and homozygous males, but not females, were infertile. Using two reporter lines (R26RLacZ and R26RtdTomato ) and a floxed gene of interest (Criptoflox ) we found ectopic activity in multiple organs; global recombination (a common feature of germline Cre alleles) varies from 10 to 100%, depending on the particular floxed allele. There is a strong maternal effect, and therefore it is preferable for Ddx4iCreJoBo to be inherited from the male parent if ubiquitous deletion is not desired. With these limitations considered, we describe the Ddx4iCreJoBo line as useful for germline studies in which early gonadal deletion is required.


Subject(s)
Germ Cells , Integrases , Animals , Male , Mice , Animals, Genetically Modified , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Germ Cells/metabolism , Integrases/genetics , Integrases/metabolism , Mice, Transgenic
3.
Molecules ; 27(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36235117

ABSTRACT

The protein HFE (homeostatic iron regulator) is a key regulator of iron metabolism, and mutations in HFE underlie the most frequent form of hereditary haemochromatosis (HH-type I). Studies have shown that HFE interacts with transferrin receptor 1 (TFR1), a homodimeric type II transmembrane glycoprotein that is responsible for the cellular uptake of iron via iron-loaded transferrin (holo-transferrin) binding. It has been hypothesised that the HFE/TFR1 interaction serves as a sensor to the level of iron-loaded transferrin in circulation by means of a competition mechanism between HFE and iron-loaded transferrin association with TFR1. To investigate this, a series of peptides based on the helical binding interface between HFE and TFR1 were generated and shown to significantly interfere with the HFE/TFR1 interaction in an in vitro proximity ligation assay. The helical conformation of one of these peptides, corresponding to the α1 and α2 helices of HFE, was stabilised by the introduction of sidechain lactam "staples", but this did not result in an increase in the ability of the peptide to disrupt the HFE/TFR1 interaction. These peptides inhibitors of the protein-protein interaction between HFE and TFR1 are potentially useful tools for the analysis of the functional role of HFE in the regulation of hepcidin expression.


Subject(s)
Hemochromatosis , Hepcidins , Hemochromatosis/genetics , Hemochromatosis/metabolism , Hemochromatosis Protein/genetics , Hemochromatosis Protein/metabolism , Hepcidins/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Iron/metabolism , Lactams , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peptides/metabolism , Peptides/pharmacology , Receptors, Transferrin/metabolism , Transferrin/metabolism
4.
Development ; 148(5)2021 03 09.
Article in English | MEDLINE | ID: mdl-33574039

ABSTRACT

In mice, the entry of germ cells into meiosis crucially depends on the expression of stimulated by retinoic acid gene 8 (Stra8). Stra8 is expressed specifically in pre-meiotic germ cells of females and males, at fetal and postnatal stages, respectively, but the mechanistic details of its spatiotemporal regulation are yet to be defined. In particular, there has been considerable debate regarding whether retinoic acid is required, in vivo, to initiate Stra8 expression in the mouse fetal ovary. We show that the distinctive anterior-to-posterior pattern of Stra8 initiation, characteristic of germ cells in the fetal ovary, is faithfully recapitulated when 2.9 kb of the Stra8 promoter is used to drive eGFP expression. Using in vitro transfection assays of cutdown and mutant constructs, we identified two functional retinoic acid responsive elements (RAREs) within this 2.9 kb regulatory element. We also show that the transcription factor DMRT1 enhances Stra8 expression, but only in the presence of RA and the most proximal RARE. Finally, we used CRISPR/Cas9-mediated targeted mutation studies to demonstrate that both RAREs are required for optimal Stra8 expression levels in vivo.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Germ Cells/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Binding Sites , CRISPR-Cas Systems/genetics , Female , Fetal Development/genetics , Fetus/cytology , Fetus/metabolism , Gene Expression Regulation/drug effects , Germ Cells/cytology , Meiosis , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutagenesis , Ovary/cytology , Ovary/metabolism , Promoter Regions, Genetic , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/pharmacology , Tretinoin/pharmacology
6.
Stem Cell Res ; 24: 174-180, 2017 10.
Article in English | MEDLINE | ID: mdl-28754604

ABSTRACT

There is now substantial evidence that members of the transforming growth factor-ß (TGFß family) regulate germ cell development in the mouse fetal testis. Correct development of germ cells during fetal life is critical for establishment of effective spermatogenesis and for avoiding the formation of testicular germ cell cancer in later life. Here we consider the evidence for involvement of various TGFß family members, attempt to reconcile discrepancies and clarify what we believe to be the likely in vivo roles of these factors.


Subject(s)
Fetus/cytology , Germ Cells/cytology , Germ Cells/metabolism , Transforming Growth Factor beta/metabolism , Animals , Humans , Male , Signal Transduction
7.
Methods Mol Biol ; 1463: 173-183, 2017.
Article in English | MEDLINE | ID: mdl-27734356

ABSTRACT

The fetal gonad contains a great variety of differentiating cell populations, of which germ cells make up a small percentage. In order to study germ cell-specific gene and protein expression, as well as determine direct effects of signaling molecules, it is necessary to prepare enriched populations of germ cells and maintain them in culture for several hours to multiple days. The protocols in this chapter are designed to provide a guide for the isolation or enrichment of mouse primordial germ cells (from 9.5 days postcoitum (dpc) to 18.5 dpc) by flow cytometry (Subheading 3.1) or magnetic sorting (Subheading 3.2), followed by primary germ cell culture (Subheading 3.3).


Subject(s)
Cell Culture Techniques/methods , Cell Separation/methods , Fetus/cytology , Germ Cells/cytology , Animals , Cell Differentiation , Culture Media, Serum-Free , Fetus/metabolism , Flow Cytometry , Germ Cells/metabolism , Mice , Signal Transduction
8.
Mol Oncol ; 10(4): 526-37, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26654129

ABSTRACT

Type II germ cell tumors arise after puberty from a germ cell that was incorrectly programmed during fetal life. Failure of testicular germ cells to properly differentiate can lead to the formation of germ cell neoplasia in situ of the testis; this precursor cell invariably gives rise to germ cell cancer after puberty. The Nodal co-receptor Cripto is expressed transiently during normal germ cell development and is ectopically expressed in non-seminomas that arise from germ cell neoplasia in situ, suggesting that its aberrant expression may underlie germ cell dysregulation and hence germ cell cancer. Here we investigated methylation of the Cripto promoter in mouse germ cells and human germ cell cancer and correlated this with the level of CRIPTO protein expression. We found hypomethylation of the CRIPTO promoter in undifferentiated fetal germ cells, embryonal carcinoma and seminomas, but hypermethylation in differentiated fetal germ cells and the differentiated types of non-seminomas. CRIPTO protein was strongly expressed in germ cell neoplasia in situ along with embryonal carcinoma, yolk sac tumor and seminomas. Further, cleaved CRIPTO was detected in media from seminoma and embryonal carcinoma cell lines, suggesting that cleaved CRIPTO may provide diagnostic indication of germ cell cancer. Accordingly, CRIPTO was detectable in serum from 6/15 patients with embryonal carcinoma, 5/15 patients with seminoma, 4/5 patients with germ cell neoplasia in situ cells only and in 1/15 control patients. These findings suggest that CRIPTO expression may be a useful serological marker for diagnostic and/or prognostic purposes during germ cell cancer management.


Subject(s)
Carcinoma, Embryonal , Epidermal Growth Factor , Epigenesis, Genetic , GPI-Linked Proteins , Gene Expression Regulation, Neoplastic , Intercellular Signaling Peptides and Proteins , Membrane Glycoproteins , Neoplasm Proteins , Testicular Neoplasms , Animals , Carcinoma, Embryonal/blood , Carcinoma, Embryonal/diagnosis , Carcinoma, Embryonal/genetics , Epidermal Growth Factor/biosynthesis , Epidermal Growth Factor/genetics , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/biosynthesis , Intercellular Signaling Peptides and Proteins/genetics , Male , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Testicular Neoplasms/blood , Testicular Neoplasms/diagnosis , Testicular Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL