Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transfusion ; 63(4): 826-838, 2023 04.
Article in English | MEDLINE | ID: mdl-36907655

ABSTRACT

BACKGROUND: Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, although it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation. STUDY DESIGN AND METHODS: WT mice were either immunized with Alum/HEL-OVA or transfused with HOD RBCs and levels of anti-HEL IgG subtypes were measured using end-point dilution ELISAs. To study the role of STAT6 in IgG class-switching, we first generated and validated novel STAT6 KO mice using CRISPR/cas9 gene editing. STAT6 KO mice were then transfused with HOD RBCs or immunized with Alum/HEL-OVA, and IgG subclasses were quantified by ELISA. RESULTS: When compared with antibody responses to Alum/HEL-OVA, transfusion of HOD RBCs induced lower levels of IgG1, IgG2b, and IgG2c but similar levels of IgG3. Class switching to most IgG subtypes remained largely unaffected in STAT6 deficient mice in response to HOD RBC transfusion, with the one exception being IgG2b. In contrast, STAT6 deficient mice showed altered levels of all IgG subtypes following Alum vaccination. DISCUSSION: Our results show that anti-RBC class-switching occurs via alternate mechanisms when compared with the well-studied immunogen alum vaccination.


Subject(s)
Erythrocytes , Immunoglobulin Class Switching , Mice , Humans , Animals , Erythrocytes/metabolism , Isoantibodies , Immunoglobulin G/metabolism , Vaccination
2.
bioRxiv ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36712006

ABSTRACT

Background: Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, though it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation. Study Design and Methods: WT mice were either immunized with Alum/HEL-OVA or transfused with HOD RBCs and levels of anti-HEL IgG subtypes were measured using end-point dilution ELISAs. To study the role of STAT6 in IgG class-switching, we first generated and validated novel STAT6 KO mice using CRISPR/cas9 gene editing. STAT6 KO mice were then transfused with HOD RBCs or immunized with Alum/HEL-OVA, and IgG subclasses were quantified by ELISA. Results: When compared to antibody responses to Alum/HEL-OVA, transfusion of HOD RBCs induced lower levels of IgG1, IgG2b and IgG2c but similar levels of IgG3. Class switching to most IgG subtypes remained largely unaffected in STAT6 deficient mice in response to HOD RBC transfusion, with the one exception being IgG2b. In contrast, STAT6 deficient mice showed altered levels of all IgG subtypes following Alum vaccination. Discussion: Our results show that anti-RBC class-switching occurs via alternate mechanisms when compared to the well-studied immunogen alum vaccination.

3.
J Bacteriol ; 203(23): e0029321, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34543106

ABSTRACT

FlhDC is a heterohexameric complex that acts as a master regulator of flagellar biosynthesis genes in numerous bacteria. Previous studies have identified a single flhDC operon encoding this complex. However, we found that two flhDC loci are present throughout Paraburkholderia, and two additional flhC copies are also present in Paraburkholderia unamae. Systematic deletion analysis in P. unamae of the different flhDC copies showed that one of the operons, flhDC1, plays the predominant role, with deletion of its genes resulting in a severe inhibition of motility and biofilm formation. Expression analysis using promoter-lacZ fusions and real-time quantitative PCR support the primary role of flhDC1 in flagellar gene regulation, with flhDC2 a secondary contributor. Phylogenetic analysis shows the presence of the flhDC1 and flhDC2 operons throughout Paraburkholderia. In contrast, Burkholderia and other bacteria only carry the copy syntenous with flhDC2. The variations in impact each copy of flhDC has on downstream processes indicate that regulation of FlhDC in P. unamae, and likely other Paraburkholderia species, is regulated at least in part by the presence of multiple copies of these genes. IMPORTANCE Motility is important in the colonization of plant roots by beneficial and pathogenic bacteria, with flagella playing essential roles in host cell adhesion, entrance, and biofilm formation. Flagellar biosynthesis is energetically expensive. Its complex regulation by the FlhDC master regulator is well studied in peritrichous flagella expressing enterics. We report the unique presence throughout Paraburkholderia of multiple copies of flhDC. In P. unamae, the flhDC1 copy showed higher expression and a greater effect on swim motility, flagellar development, and regulation of downstream genes, than the flhDC2 copy that is syntenous to flhDC in Escherichia coli and pathogenic Burkholderia spp. The flhDC genes have evolved differently in these plant-growth-promoting bacteria, giving an additional layer of complexity in gene regulation by FlhDC.


Subject(s)
Bacterial Proteins/metabolism , Burkholderiaceae/metabolism , Flagella/metabolism , Gene Expression Regulation, Bacterial/physiology , Movement/physiology , Trans-Activators/metabolism , Bacterial Proteins/genetics , Biofilms/growth & development , Burkholderiaceae/genetics , Flagella/genetics , Gene Dosage , Trans-Activators/genetics
4.
PLoS Pathog ; 17(7): e1009748, 2021 07.
Article in English | MEDLINE | ID: mdl-34310663

ABSTRACT

Prions are infectious proteins causing fatal, transmissible neurodegenerative diseases of animals and humans. Replication involves template-directed refolding of host encoded prion protein, PrPC, by its infectious conformation, PrPSc. Following its discovery in captive Colorado deer in 1967, uncontrollable contagious transmission of chronic wasting disease (CWD) led to an expanded geographic range in increasing numbers of free-ranging and captive North American (NA) cervids. Some five decades later, detection of PrPSc in free-ranging Norwegian (NO) reindeer and moose marked the first indication of CWD in Europe. To assess the properties of these emergent NO prions and compare them with NA CWD we used transgenic (Tg) and gene targeted (Gt) mice expressing PrP with glutamine (Q) or glutamate (E) at residue 226, a variation in wild type cervid PrP which influences prion strain selection in NA deer and elk. Transmissions of NO moose and reindeer prions to Tg and Gt mice recapitulated the characteristic features of CWD in natural hosts, revealing novel prion strains with disease kinetics, neuropathological profiles, and capacities to infect lymphoid tissues and cultured cells that were distinct from those causing NA CWD. In support of strain variation, PrPSc conformers comprising emergent NO moose and reindeer CWD were subject to selective effects imposed by variation at residue 226 that were different from those controlling established NA CWD. Transmission of particular NO moose CWD prions in mice expressing E at 226 resulted in selection of a kinetically optimized conformer, subsequent transmission of which revealed properties consistent with NA CWD. These findings illustrate the potential for adaptive selection of strain conformers with improved fitness during propagation of unstable NO prions. Their potential for contagious transmission has implications for risk analyses and management of emergent European CWD. Finally, we found that Gt mice expressing physiologically controlled PrP levels recapitulated the lymphotropic properties of naturally occurring CWD strains resulting in improved susceptibilities to emergent NO reindeer prions compared with over-expressing Tg counterparts. These findings underscore the refined advantages of Gt models for exploring the mechanisms and impacts of strain selection in peripheral compartments during natural prion transmission.


Subject(s)
PrPSc Proteins/genetics , Prion Proteins/genetics , Wasting Disease, Chronic/genetics , Wasting Disease, Chronic/transmission , Animals , Animals, Genetically Modified , Deer , Mice , North America , Norway
5.
J Wound Ostomy Continence Nurs ; 47(6): 551-557, 2020.
Article in English | MEDLINE | ID: mdl-33201140

ABSTRACT

PURPOSE: Extended use of N95 respirator masks is far more prevalent during the coronavirus disease 2019 (COVID-19) pandemic. As WOC nurses, we were tasked with formulating procedures for protecting the facial skin integrity of healthcare workers (HCWs) using personal protective devices when caring for patients with suspected or active COVID-19, while avoiding contamination when the masks are donned or doffed. This quality improvement project describes how we approached this project within the limited time frame available as we cared for patients with established and suspected COVID-19. PARTICIPANTS AND SETTING: This project focused on HCW use of N95 respirator masks and dressings currently available in our facility. The 4 WOC nurses acted as quality improvement project directors and as participants. The setting for our project was our facility's simulation laboratory. APPROACH: We evaluated 6 topical products (an alcohol-free liquid acrylate, thin film dressing, thin hydrocolloid dressing, hydrocolloid blister care cushion, thin foam transfer dressing, and thick foam dressing) applied to skin in contact with 3 N95 respirators; all are available on our facility's formulary and all are in widespread clinical use. After the product was applied to the face and nose, the N95 respirator was donned and evaluated for fit. Participants then wore the devices for 10 hours and doffed the mask using established facility procedures. In order to evaluate for potential contamination including possible aerosolization, we applied a commercially available fluorescent lotion to simulate the presence of infectious particles. Contamination was assessed using an ultraviolet light for all dressings except for the alcohol-free liquid acrylate. We also evaluated cutaneous responses (skin integrity, irritation, comfort) during this period. OUTCOMES: We found that contamination of the simulated pathogen did not occur with removal of any of the protective products. No skin irritation was noted with any of the tested products after a 10-hour wear time underneath the N95 respirator masks, but mild discomfort was experienced with 3 of the dressings (thin film dressing and both hydrocolloid dressings). CONCLUSION: Based on these experiences, we recommend application of an alcohol-free liquid acrylate film to prevent facial skin injury associated with friction from the extended use of an N95 respirator mask. We further recommend performing a fit test and user-performed seal check with the use of any topical dressing and especially those that add cushion. For the duration of the COVID-19 pandemic, we recommend use of protective dressings to maintain skin integrity and protection from coronavirus infection as HCWs continue to provide care to all of patients under their care.


Subject(s)
Bandages , Coronavirus Infections/prevention & control , Dermatitis, Occupational/prevention & control , Masks/adverse effects , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Protective Devices/adverse effects , Skin Diseases/prevention & control , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Dermatitis, Occupational/etiology , Humans , Infection Control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Quality Improvement , SARS-CoV-2 , Skin Diseases/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...