Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Biosensors (Basel) ; 13(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36979543

ABSTRACT

Urinary chloride concentration is a valuable health metric that can aid in the early detection of serious conditions, such as acid base disorders, acute heart failure, and incidences of acute renal failure in the intensive care unit. Physiologically, urinary chloride levels frequently change and are difficult to measure, involving time-consuming and inconvenient lab testing. Thus, near real-time simple sensors are needed to quickly provide actionable data to inform diagnostic and treatment decisions that affect health outcomes. Here, we introduce a chronopotentiometric sensor that utilizes commercially available screen-printed electrodes to accurately quantify clinically relevant chloride concentrations (5-250 mM) in seconds, with no added reagents or electrode surface modification. Initially, the sensor's performance was optimized through the proper selection of current density at a specific chloride concentration, using electrical response data in conjunction with scanning electron microscopy. We developed a unique swept current density algorithm to resolve the entire clinically relevant chloride concentration range, and the chloride sensors can be reliably reused for chloride concentrations less than 50 mM. Lastly, we explored the impact of pH, temperature, conductivity, and additional ions (i.e., artificial urine) on the sensor signal, in order to determine sensor feasibility in complex biological samples. This study provides a path for further development of a portable, near real-time sensor for the quantification of urinary chloride.


Subject(s)
Chlorides , Electrochemical Techniques , Electrodes , Microscopy, Electron, Scanning
2.
Biomicrofluidics ; 16(4): 044106, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35935121

ABSTRACT

Microfluidic devices are typically fabricated in an expensive, multistep process (e.g., photolithography, etching, and bonding). Additive manufacturing (AM) has emerged as a revolutionary technology for simple and inexpensive fabrication of monolithic structures-enabling microfluidic designs that are challenging, if not impossible, to make with existing fabrication techniques. Here, we introduce volumetric stereolithography (vSLA), an AM method in which polymerization is constrained to specific heights within a resin vat, allowing layer-by-layer fabrication without a moving platform. vSLA uses an existing dual-wavelength chemistry that polymerizes under blue light (λ = 458 nm) and inhibits polymerization under UV light (λ = 365 nm). We apply vSLA to fabricate microfluidic channels with different spatial and vertical geometries in less than 10 min. Channel heights ranged from 400 µm to 1 mm and could be controlled with an optical dose, which is a function of blue and UV light intensities and exposure time. Oxygen in the resin was found to significantly increase the amount of dose required for curing (i.e., polymerization to a gelled state), and we recommend that an inert vSLA system is used for rapid and reproducible microfluidic fabrication. Furthermore, we recommend polymerizing far beyond the gel point to form more rigid structures that are less susceptible to damage during post-processing, which can be done by simultaneously increasing the blue and UV light absorbance of the resin with light intensities. We believe that vSLA can simplify the fabrication of complex multilevel microfluidic devices, extending microfluidic innovation and availability to a broader community.

3.
Biosensors (Basel) ; 11(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34562910

ABSTRACT

Traumatic brain injury (TBI) is a leading cause of global morbidity and mortality, partially due to the lack of sensitive diagnostic methods and efficacious therapies. Panels of protein biomarkers have been proposed as a way of diagnosing and monitoring TBI. To measure multiple TBI biomarkers simultaneously, we present a variable height microfluidic device consisting of a single channel that varies in height between the inlet and outlet and can passively multiplex bead-based immunoassays by trapping assay beads at the point where their diameter matches the channel height. We developed bead-based quantum dot-linked immunosorbent assays (QLISAs) for interleukin-6 (IL-6), glial fibrillary acidic protein (GFAP), and interleukin-8 (IL-8) using DynabeadsTM M-450, M-270, and MyOneTM, respectively. The IL-6 and GFAP QLISAs were successfully multiplexed using a variable height channel that ranged in height from ~7.6 µm at the inlet to ~2.1 µm at the outlet. The IL-6, GFAP, and IL-8 QLISAs were also multiplexed using a channel that ranged in height from ~6.3 µm at the inlet to ~0.9 µm at the outlet. Our system can keep pace with TBI biomarker discovery and validation, as additional protein biomarkers can be multiplexed simply by adding in antibody-conjugated beads of different diameters.


Subject(s)
Biomarkers/metabolism , Brain Injuries, Traumatic/diagnosis , Immunoassay , Brain Injuries, Traumatic/immunology , Glial Fibrillary Acidic Protein , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques
4.
Biosensors (Basel) ; 11(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34562909

ABSTRACT

Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.


Subject(s)
Biomarkers , Brain Injuries, Traumatic , Humans
5.
Integr Biol (Camb) ; 12(11): 263-274, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33089329

ABSTRACT

While the 'unculturable' majority of the bacterial world is accessible with culture-independent tools, the inability to study these bacteria using culture-dependent approaches has severely limited our understanding of their ecological roles and interactions. To circumvent cultivation barriers, we utilize microfluidic droplets as localized, nanoliter-size bioreactors to co-cultivate subsets of microbial communities. This co-localization can support ecological interactions between a reduced number of encapsulated cells. We demonstrated the utility of this approach in the encapsulation and co-cultivation of droplet sub-communities from a fecal sample collected from a healthy human subject. With the whole genome amplification and metagenomic shotgun sequencing of co-cultivated sub-communities from 22 droplets, we observed that this approach provides accessibility to uncharacterized gut commensals for study. The recovery of metagenome-assembled genomes from one droplet sub-community demonstrated the capability to dissect the sub-communities with high-genomic resolution. In particular, genomic characterization of one novel member of the family Neisseriaceae revealed implications regarding its participation in fatty acid degradation and production of atherogenic intermediates in the human gut. The demonstrated genomic resolution and accessibility to the microbial 'dark matter' with this methodology can be applied to study the interactions of rare or previously uncultivated members of microbial communities.


Subject(s)
Bacteria/genetics , Metagenome , Metagenomics/methods , Microbiological Techniques , Microbiota , Bioreactors , Coculture Techniques , Gastrointestinal Microbiome , Genomics , High-Throughput Nucleotide Sequencing , Humans , Microfluidics , Multigene Family , RNA, Ribosomal, 16S/metabolism
6.
Lab Chip ; 20(14): 2510-2519, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32530023

ABSTRACT

Characterizing and isolating microparticles of different sizes is often desirable and essential for biological analysis. In this work, we present a new and straightforward technique to fabricate variable-height glass microchannels for size-based passive trapping of microparticles. The fabrication technique uses controlled non-uniform exposure to an etchant solution to create channels of arbitrary height that vary in a predetermined way from the inlet to the outlet. Channels that vary from 1 µm to over 20 µm in height along a length of approximately 6 cm are shown to effectively and reproducibly separate particles by size including particles whose diameters differ by less than 100 nm when the standard deviation in size is less than 0.66 µm. Additionally, healthy red blood cells and red blood cells chemically modified with glutaraldehyde to reduce their deformability were introduced into different channels. The healthy cells can flow into shallower heights, while the less deformable ones are trapped at deeper heights. The macroscopic visualization of microparticle separation in these devices in addition to their ease of use, simple fabrication, low cost, and small size suggest their viability in the final detection step of many bead-based assay protocols.


Subject(s)
Cell-Derived Microparticles , Microfluidic Analytical Techniques , Biological Assay , Erythrocytes
7.
Biomicrofluidics ; 14(1): 014109, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31966348

ABSTRACT

A continuous microfluidic viscometer is used to measure blood coagulation. The viscometer operates by flowing oil and blood into a cross section where droplets are generated. At a set pressure, the length of the droplets is inversely proportional to the viscosity of the blood sample being delivered. Because blood viscosity increases during coagulation as the blood changes from a liquid to a solid gel, the device allows to monitor coagulation by simply measuring the drop length. Experiments with swine blood were carried out in its native state and with the addition of coagulation activators and inhibitors. The microfluidic viscometer detected an earlier initiation of the coagulation process with the activator and a later initiation with the inhibitor compared to their corresponding controls. The results from the viscometer were also compared with the clinical method of thromboelastography (TEG), which was performed concurrently for the same samples. The time to initiation of coagulation in the microfluidic viscometer was correlated with the reaction time in TEG. Additionally, the total time for the measurement of clot strengthening in TEG correlated with the time for the maximum viscosity observed in the microfluidic viscometer. The microfluidic viscometer measured changes in viscosity due to coagulation faster than TEG detected the clot formation. The present viscometer is a simple technology that can be used to further study the entire coagulation process.

8.
J Appl Lab Med ; 4(2): 201-213, 2019 09.
Article in English | MEDLINE | ID: mdl-31639665

ABSTRACT

BACKGROUND: The tetrabromophenolphthalein ethyl ester (TBPE) assay has been used to quantify urinary albumin in point-of-care devices. We assessed the accuracy of this TBPE assay for urinary albumin through comparison with an established immunoturbidimetric method (ADVIA 1800 Chemistry System, Siemens). METHODS: We developed a TBPE assay protocol to quantify albumin in the range associated with microalbuminuria (0-200 mg/L). The Jaffe reaction and a 3-dimensional (3D) surface were used to compensate for creatinine interference. Spiked simulated urine samples and patient samples were used to compare the TBPE assay with the immunoturbidimetric method. Multiple linear regression was used to analyze factors that could account for discrepancies between the 2 methods. RESULTS: We found that creatinine interfered with the TBPE assay. To compensate, a 3D surface was successfully used to quantify albumin in spiked deionized water and simulated urine samples. In spiked simulated urine samples, the immunoturbidimetric method underestimated the albumin concentration by 2 to 45 mg/L, and the TBPE assay overestimated it by 9 to 82 mg/L. In patient samples, the albumin concentrations measured with the TBPE assay and the immunoturbidimetric method differed by an average of 184 mg/L. CONCLUSIONS: The TBPE assay is a function of the creatinine concentration, and a 3D surface can be used to provide accurate albumin concentrations for standard samples. The corrected TBPE method and the immunoturbidimetric method deviated from known concentrations of spiked samples. Further investigation and comparisons with a third albumin measurement method, such as LC-MS/MS, are necessary before conclusions on the accuracy of the TBPE assay can be made.


Subject(s)
Albumins/analysis , Albuminuria/diagnosis , Colorimetry/methods , Immunoturbidimetry/methods , Phenolphthaleins/chemistry , Albuminuria/urine , Humans , Point-of-Care Testing
9.
Sci Rep ; 9(1): 1278, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718531

ABSTRACT

Micro-particle operations in many lab-on-a-chip devices require active-type techniques that are accompanied by complex fabrication and operation. The present study describes an alternative method using a passive microfluidic scheme that allows for simpler operation and, therefore, potentially less expensive devices. We present three practical micro-particle operations using our previously developed passive mechanical trap, the asymmetric trap, in a non-acoustic oscillatory flow field. First, we demonstrate size-based segregation of both binary and ternary micro-particle mixtures using size-dependent trap-particle interactions to induce different transport speeds for each particle type. The degree of segregation, yield, and purity of the binary segregations are 0.97 ± 0.02, 0.96 ± 0.06, and 0.95 ± 0.05, respectively. Next, we perform a solution exchange by displacing particles from one solution into another in a trap array. Lastly, we focus and split groups of micro-particles by exploiting the transport polarity of asymmetric traps. These operations can be implemented in any closed fluidic circuit containing asymmetric traps using non-acoustic oscillatory flow, and they open new opportunities to flexibly control micro-particles in integrated lab-on-a-chip platforms with minimal external equipment.

10.
Sci Adv ; 5(1): eaau8723, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30746465

ABSTRACT

Contemporary, layer-wise additive manufacturing approaches afford sluggish object fabrication rates and often yield parts with ridged surfaces; in contrast, continuous stereolithographic printing overcomes the layer-wise operation of conventional devices, greatly increasing achievable print speeds and generating objects with smooth surfaces. We demonstrate a novel method for rapid and continuous stereolithographic additive manufacturing by using two-color irradiation of (meth)acrylate resin formulations containing complementary photoinitiator and photoinhibitor species. In this approach, photopatterned polymerization inhibition volumes generated by irradiation at one wavelength spatially confine the region photopolymerized by a second concurrent irradiation wavelength. Moreover, the inhibition volumes created using this method enable localized control of the polymerized region thickness to effect single-exposure, topographical patterning.

11.
ACS Macro Lett ; 8(8): 899-904, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-35619499

ABSTRACT

Conventional photolithographic rapid prototyping approaches typically achieve reaction confinement in depth through patterned irradiation of a photopolymerizable resin at a wavelength where the resin strongly absorbs, such that only a very thin layer of material is solidified. Consequently, three-dimensional objects are fabricated by progressive, two-dimensional addition of material, curtailing fabrication rates and necessitating the incorporation of support structures to ensure the integrity of overhanging features. Here, we examine butyl nitrite as a UV-active photoinhibitor of blue light-induced photopolymerizations and explore its utilization to confine in depth the region polymerized in a volume of resin. By employing two perpendicular irradiation patterns at blue and near-UV wavelengths to independently effect either polymerization initiation or inhibition, respectively, we enable three-dimensional photopolymerization patterning in bulk resin, thereby complementing emergent approaches to volumetric 3D printing.

12.
Small ; 14(9)2018 03.
Article in English | MEDLINE | ID: mdl-29377529

ABSTRACT

One challenge of integrating of passive, microparticles manipulation techniques into multifunctional microfluidic devices is coupling the continuous-flow format of most systems with the often batch-type operation of particle separation systems. Here, a passive fluidic technique-one-way particle transport-that can conduct microparticle operations in a closed fluidic circuit is presented. Exploiting pass/capture interactions between microparticles and asymmetric traps, this technique accomplishes a net displacement of particles in an oscillatory flow field. One-way particle transport is achieved through four kinds of trap-particle interactions: mechanical capture of the particle, asymmetric interactions between the trap and the particle, physical collision of the particle with an obstacle, and lateral shift of the particle into a particle-trapping stream. The critical dimensions for those four conditions are found by numerically solving analytical mass balance equations formulated using the characteristics of the flow field in periodic obstacle arrays. Visual observation of experimental trap-particle dynamics in low Reynolds number flow (<0.01) confirms the validity of the theoretical predictions. This technique can transport hundreds of microparticles across trap rows in only a few fluid oscillations (<500 ms per oscillation) and separate particles by their size differences.


Subject(s)
Microfluidic Analytical Techniques/methods , Lab-On-A-Chip Devices , Particle Size
13.
Anal Chem ; 89(17): 8748-8756, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28774174

ABSTRACT

Leakage of lead and other heavy metals into drinking water is a significant health risk and one that is not easily detected. We have developed simple sensors containing only platinum electrodes for the detection of heavy metal contamination in drinking water. The two-electrode sensor can identify the existence of a variety of heavy metals in drinking water, and the four-electrode sensor can distinguish lead from other heavy metals in solution. No false-positive response is generated when the sensors are placed in simulated and actual tap water contaminated by heavy metals. Lead detection on the four-electrode sensor is not affected by the presence of common ions in tap water. Experimental results suggest the sensors can be embedded in water service lines for long-time use until lead or other heavy metals are detected. With its low cost (∼$0.10/sensor) and the possibility of long-term operation, the sensors are ideal for heavy metal detection of drinking water.


Subject(s)
Drinking Water/analysis , Electrochemical Techniques/instrumentation , Lead/analysis , Water Pollutants, Chemical/analysis , Electric Impedance , Electrochemical Techniques/economics , Electrochemical Techniques/methods , Electrodes , Platinum/chemistry
14.
Sensors (Basel) ; 17(7)2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28753913

ABSTRACT

Monitoring of the pH, oxidation-reduction-potential (ORP), and conductivity of aqueous samples is typically performed using multiple sensors. To minimize the size and cost of these sensors for practical applications, we have investigated the use of a single sensor constructed with only bare platinum electrodes deposited on a glass substrate. The sensor can measure pH from 4 to 10 while simultaneously measuring ORP from 150 to 800 mV. The device can also measure conductivity up to 8000 µS/cm in the range of 10 °C to 50 °C, and all these measurements can be made even if the water samples contain common ions found in residential water. The sensor is inexpensive (i.e., ~$0.10/unit) and has a sensing area below 1 mm², suggesting that the unit is cost-efficient, robust, and widely applicable, including in microfluidic systems.

15.
PLoS One ; 12(3): e0173479, 2017.
Article in English | MEDLINE | ID: mdl-28282412

ABSTRACT

Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead's solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 µm, beads above 10 µm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield.


Subject(s)
Fluorescence , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
16.
Anal Chem ; 89(7): 3996-4006, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28240541

ABSTRACT

Viscosity measurements have a wide range of applications from industrial chemical production to medical diagnosis. In this work, we have developed a simple droplet-based, water-in-oil continuous viscometer capable of measuring viscosity changes in 10 s or less and consuming a total sample volume of less than 1 µL/h. The viscometer employs a flow-focusing geometry and generates droplets under constant pressure. The length of the droplets (Ld) is highly correlated to the aqueous-phase viscosity (µaq) at high ratios of aqueous-inlet to oil-inlet pressure (AIP/OIP), yielding a linear relationship between µaq and 1/(Ld - Lc) where Lc is the minimal obtainable droplet length and approximately equals to the width of the droplet-generating channel. Theoretical analysis verifies this linear relationship, and the resulting equations can be used to optimize the design of the device such as the channel width, depth, and length. The viscometer can be used for Newtonian fluids and, by accurately calculating the shear rate, for non-Newtonian fluids such as Boger fluids and shear thinning fluids. In these latter cases, the shear rates depend on the velocity of the aqueous phase and can be adjusted by varying the input pressures. The applicable range of viscosity measurements depends on the oil-phase viscosity (µoil), and viscosities within the range of 0.01-10 µoil can be measured reliably with less than 5% error.

17.
Biosensors (Basel) ; 4(1): 76-89, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25587411

ABSTRACT

We have developed a label-free viscosity-based DNA detection system, using paramagnetic beads as an asynchronous magnetic bead rotation (AMBR) microviscometer. We have demonstrated experimentally that the bead rotation period is linearly proportional to the viscosity of a DNA solution surrounding the paramagnetic bead, as expected theoretically. Simple optical measurement of asynchronous microbead motion determines solution viscosity precisely in microscale volumes, thus allowing an estimate of DNA concentration or average fragment length. The response of the AMBR microviscometer yields reproducible measurement of DNA solutions, enzymatic digestion reactions, and PCR systems at template concentrations across a 5000-fold range. The results demonstrate the feasibility of viscosity-based DNA detection using AMBR in microscale aqueous volumes.

18.
Lab Chip ; 13(2): 297-301, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23192296

ABSTRACT

Measurement of a solution's viscosity is an important analytic technique for a variety of applications including medical diagnosis, pharmaceutical development, and industrial processing. The use of droplet-based (e.g., water-in-oil) microfluidics for viscosity measurements allows nanoliter-scale sample volumes to be used, much smaller than those either in standard macro-scale rheometers or in single-phase microfluidic viscometers. By observing the flow rate of a sample plug driven by a controlled pressure through an abrupt constriction, we achieve accurate and precise measurement of the plug viscosity without addition of labels or tracer particles. Sample plugs in our device geometry had a volume of ~30 nL, and measurements had an average error of 6.6% with an average relative standard deviation of 2.8%. We tested glycerol-based samples with viscosities as high as 101 mPa s, with the only limitation on samples being that their viscosity should be higher than that of the continuous oil phase.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Equipment Design , Microfluidic Analytical Techniques/methods , Nanotechnology , Oils/chemistry , Temperature , Viscosity , Water/chemistry
19.
J Phys Chem B ; 117(16): 4406-11, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23256598

ABSTRACT

Single-molecule super-resolution microscopy is an emerging technique for nanometer-scale fluorescence imaging, but in vitro single-molecule imaging protocols typically require a constant supply of reagents, and such transport is restricted in constrained geometries. In this article, we develop single-molecule micelle-assisted blink (MAB) microcopy to enable subdiffraction-limit imaging of nanochannels with better than 40 nm accuracy. The method, based on micelles and thiol-related photoswitching, is used to measure nanochannels formed in polydimethylsiloxane through tensile cracking. These conduits are reversibly size-adjustable from a few nanometers up to a micrometer and enable filtering of small particles and linearization of DNA. Unfortunately, conventional techniques cannot be used to measure widths, characterize heterogeneities, or discover porosity in situ. We overcome the access barriers by using sodium dodecyl sulfate (SDS), an ionic surfactant, to facilitate delivery of Cy5 dye and ß-mercaptoethanol reducing agent in the confined geometry. These SDS micelles and admicelles have the further benefit of slowing diffusion of Cy5 to improve localization accuracy. We use MAB microscopy to measure nanochannel widths, to reveal heterogeneity along channel lengths and between different channels in the same device, and to probe biologically relevant information about the nanoenvironment, such as solvent accessibility.


Subject(s)
Dimethylpolysiloxanes/chemistry , Micelles , Nanostructures/chemistry , Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Mercaptoethanol/chemistry , Microscopy, Fluorescence , Sodium Dodecyl Sulfate/chemistry
20.
Anal Chem ; 84(12): 5250-6, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22507307

ABSTRACT

The long turnaround time in antimicrobial susceptibility testing (AST) endangers patients and encourages the administration of wide spectrum antibiotics, thus resulting in alarming increases of multidrug resistant pathogens. A method for faster detection of bacterial proliferation presents one avenue toward addressing this global concern. We report on a label-free asynchronous magnetic bead rotation (AMBR) based viscometry method that rapidly detects bacterial growth and determines drug sensitivity by measuring changes in the suspension's viscosity. With this platform, we observed the growth of a uropathogenic Escherichia coli isolate, with an initial concentration of 50 cells per drop, within 20 min; in addition, we determined the gentamicin minimum inhibitory concentration (MIC) of the E. coli isolate within 100 min. We thus demonstrated a label-free, microviscometer platform that can measure bacterial growth and drug susceptibility more rapidly, with lower initial bacterial counts than existing commercial systems, and potentially with any microbial strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Magnets , Microspheres , Microtechnology/instrumentation , Rotation , Gentamicins/pharmacology , Time Factors , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...