Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 71(19): 6107-6115, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32668003

ABSTRACT

Soil compaction represents a major impediment to plant growth, yet wild plants are often observed thriving in soil of high bulk density in non-agricultural settings. We analysed the root growth of three non-cultivated species often found growing in compacted soils in the natural environment. Plants of ribwort plantain (Plantago lanceolata), dandelion (Taraxacum officinale), and spear thistle (Cirsium vulgare) were grown for 28 d in a sandy loam soil compacted to 1.8 g cm-3 with a penetration resistance of 1.55 MPa. X-Ray computed tomography was used to observe root architecture in situ and to visualise changes in rhizosphere porosity (at a resolution of 35 µm) at 14 d and 28 d after sowing. Porosity of the soil was analysed within four incremental zones up to 420 µm from the root surface. In all species, the porosity of the rhizosphere was greatest closest to the root and decreased with distance from the root surface. There were significant differences in rhizosphere porosity between the three species, with Cirsium plants exhibiting the greatest structural genesis across all rhizosphere zones. This creation of pore space indicates that plants can self-remediate compacted soil via localised structural reorganisation in the rhizosphere, which has potential functional implications for both plant and soil.


Subject(s)
Rhizosphere , Soil , Plant Roots , Porosity , Tomography, X-Ray Computed
3.
Curr Biol ; 27(17): R919-R930, 2017 Sep 11.
Article in English | MEDLINE | ID: mdl-28898665

ABSTRACT

Plants are sessile organisms rooted in one place. The soil resources that plants require are often distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots whose growth and development are highly responsive to soil signals. As a result, 3D root architecture is shaped by myriad environmental signals to ensure resource capture is optimised and unfavourable environments are avoided. The first signals sensed by newly germinating seeds - gravity and light - direct root growth into the soil to aid seedling establishment. Heterogeneous soil resources, such as water, nitrogen and phosphate, also act as signals that shape 3D root growth to optimise uptake. Root architecture is also modified through biotic interactions that include soil fungi and neighbouring plants. This developmental plasticity results in a 'custom-made' 3D root system that is best adapted to forage for resources in each soil environment that a plant colonises.


Subject(s)
Plant Roots/anatomy & histology , Plant Roots/growth & development , Soil/chemistry , Gravitropism , Phototropism , Plant Roots/microbiology , Seedlings/anatomy & histology , Seedlings/growth & development , Seedlings/microbiology
4.
PLoS One ; 12(7): e0181872, 2017.
Article in English | MEDLINE | ID: mdl-28753645

ABSTRACT

Plant roots growing through soil typically encounter considerable structural heterogeneity, and local variations in soil dry bulk density. The way the in situ architecture of root systems of different species respond to such heterogeneity is poorly understood due to challenges in visualising roots growing in soil. The objective of this study was to visualise and quantify the impact of abrupt changes in soil bulk density on the roots of three cover crop species with contrasting inherent root morphologies, viz. tillage radish (Raphanus sativus), vetch (Vicia sativa) and black oat (Avena strigosa). The species were grown in soil columns containing a two-layer compaction treatment featuring a 1.2 g cm-3 (uncompacted) zone overlaying a 1.4 g cm-3 (compacted) zone. Three-dimensional visualisations of the root architecture were generated via X-ray computed tomography, and an automated root-segmentation imaging algorithm. Three classes of behaviour were manifest as a result of roots encountering the compacted interface, directly related to the species. For radish, there was switch from a single tap-root to multiple perpendicular roots which penetrated the compacted zone, whilst for vetch primary roots were diverted more horizontally with limited lateral growth at less acute angles. Black oat roots penetrated the compacted zone with no apparent deviation. Smaller root volume, surface area and lateral growth were consistently observed in the compacted zone in comparison to the uncompacted zone across all species. The rapid transition in soil bulk density had a large effect on root morphology that differed greatly between species, with major implications for how these cover crops will modify and interact with soil structure.


Subject(s)
Crops, Agricultural/anatomy & histology , Soil/chemistry , Tomography, X-Ray Computed/methods , Imaging, Three-Dimensional , Plant Roots/anatomy & histology , Porosity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...