Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 99(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34370018

ABSTRACT

Understanding how ß adrenergic agonists influence the physiology of heat stress could lead to mitigation options. We sought to investigate body surface temperatures in feedlot wethers supplemented with ractopamine or zilpaterol and exposed to heat stress for 18 d. Corneal and skin temperatures were assessed via infrared thermography at 1- and 2-m distances. Rectal temperatures and circulating leukocytes, metabolites, and electrolytes were also measured. Heat stress increased (P < 0.05) rectal temperatures in unsupplemented and zilpaterol-supplemented lambs but not in ractopamine-supplemented lambs. Heat stress also increased (P < 0.05) surface temperatures of the cornea, nose, ear, and back, regardless of supplement. Observations were comparable between thermography performed at 1 and 2 m, and higher emissivity settings generally produced less variation. Heat stress tended to increase (P = 0.08) blood monocytes in unsupplemented but not ractopamine- or zilpaterol-supplemented lambs. Granulocytes were increased (P < 0.05) by heat stress in ractopamine-supplemented lambs but decreased (P < 0.05) in zilpaterol-supplemented lambs. Blood glucose, triglycerides, and cholesterol did not differ among groups, and blood lactate was reduced (P < 0.05) by heat stress in zilpaterol-supplemented lambs only. Blood Na+ was reduced (P < 0.05) and Ca2+ increased (P < 0.05) by heat stress, regardless of supplement. These findings indicate that ß1- and ß2-adrenergic agonists differentially relieve some but not all heat stress-induced changes in stress indicators. Moreover, corneal and skin surface temperatures measured by infrared thermography reasonably identified body temperature changes at a distance of 2 m.


Subject(s)
Body Temperature , Heat-Shock Response , Animals , Cornea , Leukocytes , Male , Phenethylamines , Sheep , Temperature , Trimethylsilyl Compounds
2.
J Appl Genet ; 61(1): 117-121, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31707691

ABSTRACT

Ractopamine HCl (RHC) is supplemented to feedlot cattle to improve feed efficiency and increase carcass weight. Supplementation of RHC clearly benefits livestock production, but it is of note that the adrenergic system through which it acts is typically associated with stress. The purpose of this study was to identify changes in the transcriptome of whole blood in RHC-supplemented feedlot cattle. We hypothesized that transcripts related to inflammatory processes would be upregulated after 35 days of dietary RHC supplementation. To test this hypothesis, RNA from whole blood collected from 16 cattle before and after supplementation with 300 mg/day of RHC was sequenced using 3' tag-seq. Eight transcripts were differentially expressed (Adjp < 0.10) between pre- and post-supplementation blood samples. Although several of these transcripts including IFI35, TYROBP, and TP53INP1 are associated with inflammation, a systemic dysregulation of inflammatory pathways was not evident. These data provide insight into the response of cattle to RHC supplementation that will direct future studies examining how the transcriptome of whole blood and other tissues responds during acute exposure to RHC and how this supplement mechanistically improves growth performance.


Subject(s)
Adrenergic Agonists/pharmacology , Animal Feed , Dietary Supplements , Gene Expression Profiling , Gene Expression Regulation/drug effects , Transcriptome/drug effects , Animals , Biomarkers , Cattle , Female , Male
3.
Mamm Genome ; 30(3-4): 81-87, 2019 04.
Article in English | MEDLINE | ID: mdl-30788588

ABSTRACT

A genetic disorder, osteogenesis imperfecta (OI) is broadly characterized by connective tissue abnormalities and bone fragility most commonly attributed to alterations in Type I collagen. Two Red Angus calves by the same sire presented with severe bone and dental fragility, blue sclera, and evidence of in utero fractures consistent with OI congenita. Comparative analyses with human cases suggested the OI in these calves most closely resembled that classified as OI Type II. Due to the phenotypic classification and shared paternity, a dominant, germ-line variant was hypothesized as causative although recessive genotypes were also considered due to a close relationship between the sire and dam of one calf. Whole-genome sequencing revealed the presence of a missense mutation in the alpha 1 chain of collagen Type I (COL1A1), for which both calves were heterozygous. The variant resulted in the substitution of a glycine residue with serine in the triple helical domain of the protein; in this region, glycine normally occupies every third position as is critical for correct formation of the Type I collagen molecule. Allele-specific amplification by droplet digital PCR further quantified the variant at a frequency of nearly 4.4% in the semen of the sire while it was absent in his blood, supporting the hypothesis of a de novo causative variant for which the germ line of the sire was mosaic. The identification of novel variants associated with unwanted phenotypes in livestock is critical as the high prolificacy of breeding stock has the potential to rapidly disseminate undesirable variation.


Subject(s)
Cattle Diseases/genetics , Germ-Line Mutation , Osteogenesis Imperfecta/veterinary , Alleles , Animals , Cattle , Cattle Diseases/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Female , Genes, Dominant , Male , Mutation, Missense , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism , Pedigree , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...