Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nature ; 622(7982): 339-347, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794183

ABSTRACT

Integrating human genomics and proteomics can help elucidate disease mechanisms, identify clinical biomarkers and discover drug targets1-4. Because previous proteogenomic studies have focused on common variation via genome-wide association studies, the contribution of rare variants to the plasma proteome remains largely unknown. Here we identify associations between rare protein-coding variants and 2,923 plasma protein abundances measured in 49,736 UK Biobank individuals. Our variant-level exome-wide association study identified 5,433 rare genotype-protein associations, of which 81% were undetected in a previous genome-wide association study of the same cohort5. We then looked at aggregate signals using gene-level collapsing analysis, which revealed 1,962 gene-protein associations. Of the 691 gene-level signals from protein-truncating variants, 99.4% were associated with decreased protein levels. STAB1 and STAB2, encoding scavenger receptors involved in plasma protein clearance, emerged as pleiotropic loci, with 77 and 41 protein associations, respectively. We demonstrate the utility of our publicly accessible resource through several applications. These include detailing an allelic series in NLRC4, identifying potential biomarkers for a fatty liver disease-associated variant in HSD17B13 and bolstering phenome-wide association studies by integrating protein quantitative trait loci with protein-truncating variants in collapsing analyses. Finally, we uncover distinct proteomic consequences of clonal haematopoiesis (CH), including an association between TET2-CH and increased FLT3 levels. Our results highlight a considerable role for rare variation in plasma protein abundance and the value of proteogenomics in therapeutic discovery.


Subject(s)
Biological Specimen Banks , Blood Proteins , Genetic Association Studies , Genomics , Proteomics , Humans , Alleles , Biomarkers/blood , Blood Proteins/analysis , Blood Proteins/genetics , Databases, Factual , Exome/genetics , Hematopoiesis , Mutation , Plasma/chemistry , United Kingdom
2.
Nature ; 622(7982): 329-338, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794186

ABSTRACT

The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide a detailed summary of this initiative, including technical and biological validations, insights into proteomic disease signatures, and prediction modelling for various demographic and health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary genetic associations, of which 81% are previously undescribed, alongside ancestry-specific pQTL mapping in non-European individuals. The study provides an updated characterization of the genetic architecture of the plasma proteome, contextualized with projected pQTL discovery rates as sample sizes and proteomic assay coverages increase over time. We offer extensive insights into trans pQTLs across multiple biological domains, highlight genetic influences on ligand-receptor interactions and pathway perturbations across a diverse collection of cytokines and complement networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for drug discovery by extending the genetic proxied effects of protein targets, such as PCSK9, on additional endpoints, and disentangle specific genes and proteins perturbed at loci associated with COVID-19 susceptibility. This public-private partnership provides the scientific community with an open-access proteomics resource of considerable breadth and depth to help to elucidate the biological mechanisms underlying proteo-genomic discoveries and accelerate the development of biomarkers, predictive models and therapeutics1.


Subject(s)
Biological Specimen Banks , Blood Proteins , Databases, Factual , Genomics , Health , Proteome , Proteomics , Humans , ABO Blood-Group System/genetics , Blood Proteins/analysis , Blood Proteins/genetics , COVID-19/genetics , Drug Discovery , Epistasis, Genetic , Fucosyltransferases/metabolism , Genetic Predisposition to Disease , Plasma/chemistry , Proprotein Convertase 9/metabolism , Proteome/analysis , Proteome/genetics , Public-Private Sector Partnerships , Quantitative Trait Loci , United Kingdom , Galactoside 2-alpha-L-fucosyltransferase
3.
Blood ; 142(24): 2055-2068, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37647632

ABSTRACT

Rare genetic diseases affect millions, and identifying causal DNA variants is essential for patient care. Therefore, it is imperative to estimate the effect of each independent variant and improve their pathogenicity classification. Our study of 140 214 unrelated UK Biobank (UKB) participants found that each of them carries a median of 7 variants previously reported as pathogenic or likely pathogenic. We focused on 967 diagnostic-grade gene (DGG) variants for rare bleeding, thrombotic, and platelet disorders (BTPDs) observed in 12 367 UKB participants. By association analysis, for a subset of these variants, we estimated effect sizes for platelet count and volume, and odds ratios for bleeding and thrombosis. Variants causal of some autosomal recessive platelet disorders revealed phenotypic consequences in carriers. Loss-of-function variants in MPL, which cause chronic amegakaryocytic thrombocytopenia if biallelic, were unexpectedly associated with increased platelet counts in carriers. We also demonstrated that common variants identified by genome-wide association studies (GWAS) for platelet count or thrombosis risk may influence the penetrance of rare variants in BTPD DGGs on their associated hemostasis disorders. Network-propagation analysis applied to an interactome of 18 410 nodes and 571 917 edges showed that GWAS variants with large effect sizes are enriched in DGGs and their first-order interactors. Finally, we illustrate the modifying effect of polygenic scores for platelet count and thrombosis risk on disease severity in participants carrying rare variants in TUBB1 or PROC and PROS1, respectively. Our findings demonstrate the power of association analyses using large population datasets in improving pathogenicity classifications of rare variants.


Subject(s)
Genome-Wide Association Study , Thrombosis , Humans , Biological Specimen Banks , Hemostasis , Hemorrhage/genetics , Rare Diseases
4.
J Allergy Clin Immunol ; 152(1): 257-265, 2023 07.
Article in English | MEDLINE | ID: mdl-36828084

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is one of the most common life-limiting autosomal-recessive disorders and is caused by genetic defects in the CF transmembrane conductance regulator (CFTR) gene. Some of the features of this multisystem disease can be present in primary immunodeficiency (PID). OBJECTIVE: We hypothesized that a carrier CFTR status might be associated with worse outcome regarding structural lung disease in patients with PID. METHODS: A within-cohort and population-level statistical genomic analysis of a large European cohort of PID patients was performed using genome sequence data. Genomic analysis of variant pathogenicity was performed. RESULTS: Compared to the general population, p.Phe508del carriage was enriched in lung-related PID. Additionally, carriage of several pathogenic CFTR gene variants were increased in PID associated with structural lung damage compared to PID patients without the structural lung damage. We identified 3 additional biallelic cases, including several variants not traditionally considered to cause CF. CONCLUSION: Genome sequencing identified cases of CFTR dysfunction in PID, driving an increased susceptibility to infection. Large national genomic services provide an opportunity for precision medicine by interpreting subtle features of genomic diversity when treating traditional Mendelian disorders.


Subject(s)
Bronchiectasis , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Prevalence , Mutation , Bronchiectasis/epidemiology , Bronchiectasis/genetics , Cystic Fibrosis/epidemiology , Cystic Fibrosis/genetics
5.
Am J Hum Genet ; 109(12): 2105-2109, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36459978

ABSTRACT

Synonymous mutations change the DNA sequence of a gene without affecting the amino acid sequence of the encoded protein. Although some synonymous mutations can affect RNA splicing, translational efficiency, and mRNA stability, studies in human genetics, mutagenesis screens, and other experiments and evolutionary analyses have repeatedly shown that most synonymous variants are neutral or only weakly deleterious, with some notable exceptions. Based on a recent study in yeast, there have been claims that synonymous mutations could be as important as nonsynonymous mutations in causing disease, assuming the yeast findings hold up and translate to humans. Here, we argue that there is insufficient evidence to overturn the large, coherent body of knowledge establishing the predominant neutrality of synonymous variants in the human genome.


Subject(s)
Biological Evolution , Saccharomyces cerevisiae , Humans , Mutation/genetics , Amino Acid Sequence , Genome, Human/genetics
6.
Front Genet ; 12: 745672, 2021.
Article in English | MEDLINE | ID: mdl-34759959

ABSTRACT

Genetic variants showing associations with specific biological traits and diseases detected by genome-wide association studies (GWAS) commonly map to non-coding DNA regulatory regions. Many of these regions are located considerable distances away from the genes they regulate and come into their proximity through 3D chromosomal interactions. We previously developed COGS, a statistical pipeline for linking GWAS variants with their putative target genes based on 3D chromosomal interaction data arising from high-resolution assays such as Promoter Capture Hi-C (PCHi-C). Here, we applied COGS to COVID-19 Host Genetic Consortium (HGI) GWAS meta-analysis data on COVID-19 susceptibility and severity using our previously generated PCHi-C results in 17 human primary cell types and SARS-CoV-2-infected lung carcinoma cells. We prioritise 251 genes putatively associated with these traits, including 16 out of 47 genes highlighted by the GWAS meta-analysis authors. The prioritised genes are expressed in a broad array of tissues, including, but not limited to, blood and brain cells, and are enriched for genes involved in the inflammatory response to viral infection. Our prioritised genes and pathways, in conjunction with results from other prioritisation approaches and targeted validation experiments, will aid in the understanding of COVID-19 pathology, paving the way for novel treatments.

7.
Genome Med ; 12(1): 106, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239102

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have identified pervasive sharing of genetic architectures across multiple immune-mediated diseases (IMD). By learning the genetic basis of IMD risk from common diseases, this sharing can be exploited to enable analysis of less frequent IMD where, due to limited sample size, traditional GWAS techniques are challenging. METHODS: Exploiting ideas from Bayesian genetic fine-mapping, we developed a disease-focused shrinkage approach to allow us to distill genetic risk components from GWAS summary statistics for a set of related diseases. We applied this technique to 13 larger GWAS of common IMD, deriving a reduced dimension "basis" that summarised the multidimensional components of genetic risk. We used independent datasets including the UK Biobank to assess the performance of the basis and characterise individual axes. Finally, we projected summary GWAS data for smaller IMD studies, with less than 1000 cases, to assess whether the approach was able to provide additional insights into genetic architecture of less common IMD or IMD subtypes, where cohort collection is challenging. RESULTS: We identified 13 IMD genetic risk components. The projection of independent UK Biobank data demonstrated the IMD specificity and accuracy of the basis even for traits with very limited case-size (e.g. vitiligo, 150 cases). Projection of additional IMD-relevant studies allowed us to add biological interpretation to specific components, e.g. related to raised eosinophil counts in blood and serum concentration of the chemokine CXCL10 (IP-10). On application to 22 rare IMD and IMD subtypes, we were able to not only highlight subtype-discriminating axes (e.g. for juvenile idiopathic arthritis) but also suggest eight novel genetic associations. CONCLUSIONS: Requiring only summary-level data, our unsupervised approach allows the genetic architectures across any range of clinically related traits to be characterised in fewer dimensions. This facilitates the analysis of studies with modest sample size by matching shared axes of both genetic and biological risk across a wider disease domain, and provides an evidence base for possible therapeutic repurposing opportunities.


Subject(s)
Genetic Engineering , Immune System Diseases/genetics , Bayes Theorem , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide , Risk Factors , Sample Size
9.
Nature ; 583(7814): 96-102, 2020 07.
Article in English | MEDLINE | ID: mdl-32581362

ABSTRACT

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Subject(s)
Internationality , National Health Programs , Rare Diseases/diagnosis , Rare Diseases/genetics , Whole Genome Sequencing , Actin-Related Protein 2-3 Complex/genetics , Adaptor Proteins, Signal Transducing/genetics , Alleles , Databases, Factual , Erythrocytes/metabolism , GATA1 Transcription Factor/genetics , Humans , Phenotype , Quantitative Trait Loci , Receptors, Thrombopoietin/genetics , State Medicine , United Kingdom
10.
Nature ; 583(7814): 90-95, 2020 07.
Article in English | MEDLINE | ID: mdl-32499645

ABSTRACT

Primary immunodeficiency (PID) is characterized by recurrent and often life-threatening infections, autoimmunity and cancer, and it poses major diagnostic and therapeutic challenges. Although the most severe forms of PID are identified in early childhood, most patients present in adulthood, typically with no apparent family history and a variable clinical phenotype of widespread immune dysregulation: about 25% of patients have autoimmune disease, allergy is prevalent and up to 10% develop lymphoid malignancies1-3. Consequently, in sporadic (or non-familial) PID genetic diagnosis is difficult and the role of genetics is not well defined. Here we address these challenges by performing whole-genome sequencing in a large PID cohort of 1,318 participants. An analysis of the coding regions of the genome in 886 index cases of PID found that disease-causing mutations in known genes that are implicated in monogenic PID occurred in 10.3% of these patients, and a Bayesian approach (BeviMed4) identified multiple new candidate PID-associated genes, including IVNS1ABP. We also examined the noncoding genome, and found deletions in regulatory regions that contribute to disease causation. In addition, we used a genome-wide association study to identify loci that are associated with PID, and found evidence for the colocalization of-and interplay between-novel high-penetrance monogenic variants and common variants (at the PTPN2 and SOCS1 loci). This begins to explain the contribution of common variants to the variable penetrance and phenotypic complexity that are observed in PID. Thus, using a cohort-based whole-genome-sequencing approach in the diagnosis of PID can increase diagnostic yield and further our understanding of the key pathways that influence immune responsiveness in humans.


Subject(s)
Primary Immunodeficiency Diseases/genetics , Whole Genome Sequencing , Actin-Related Protein 2-3 Complex/genetics , Bayes Theorem , Cohort Studies , Female , Genome-Wide Association Study , Humans , Male , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , RNA-Binding Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Suppressor of Cytokine Signaling 1 Protein/genetics , Transcription Factors/genetics
11.
Nat Immunol ; 21(6): 695, 2020 06.
Article in English | MEDLINE | ID: mdl-32296167

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
EMBO Mol Med ; 12(5): e12112, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32239644

ABSTRACT

Deriving mechanisms of immune-mediated disease from GWAS data remains a formidable challenge, with attempts to identify causal variants being frequently hampered by strong linkage disequilibrium. To determine whether causal variants could be identified from their functional effects, we adapted a massively parallel reporter assay for use in primary CD4 T cells, the cell type whose regulatory DNA is most enriched for immune-mediated disease SNPs. This enabled the effects of candidate SNPs to be examined in a relevant cellular context and generated testable hypotheses into disease mechanisms. To illustrate the power of this approach, we investigated a locus that has been linked to six immune-mediated diseases but cannot be fine-mapped. By studying the lead expression-modulating SNP, we uncovered an NF-κB-driven regulatory circuit which constrains T-cell activation through the dynamic formation of a super-enhancer that upregulates TNFAIP3 (A20), a key NF-κB inhibitor. In activated T cells, this feedback circuit is disrupted-and super-enhancer formation prevented-by the risk variant at the lead SNP, leading to unrestrained T-cell activation via a molecular mechanism that appears to broadly predispose to human autoimmunity.


Subject(s)
CD4-Positive T-Lymphocytes , NF-kappa B , Autoimmunity , Humans , Polymorphism, Single Nucleotide
13.
Nat Immunol ; 20(3): 375, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30728494

ABSTRACT

In the version of this article initially published, the bibliographic information for reference 2 was incorrect in the reference list, and reference 2 was cited incorrectly at the end of the second sentence in the second paragraph ("...were identified2."). The correct reference 2 is as follows: "Kong, A. et al. The nature of nurture: Effects of parental genotypes. Science 359, 424-428 (2018)." The reference that should be cited at the end of the aforementioned sentence, which should be numbered '5' ("...were identified5."), is as follows: "Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376-381 (2014)." All subsequent references (5-161) should be renumbered accordingly (6-162) in the list and text. Also, several of the gene symbols in Table 2 were formatted incorrectly (without commas); the correct gene symbols are as follows: column 3 row 13, RBM17, IL2RA; column 3 row 30, DEXI, CLEC16A; column 3 row 39, UBASH3A, ICOSLG; column 4 row 15, PTEN, KLLN; column 4 row 21, CLEC7A, CLEC9A; and column 5 rows 7-9, AL391559.1, ENSG00000238747, RP11-63K6.7, RP3-512E2.2. The errors have been corrected in the HTML and PDF version of the article.

14.
BMC Genomics ; 20(1): 77, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30674271

ABSTRACT

BACKGROUND: Hi-C and capture Hi-C (CHi-C) are used to map physical contacts between chromatin regions in cell nuclei using high-throughput sequencing. Analysis typically proceeds considering the evidence for contacts between each possible pair of fragments independent from other pairs. This can produce long runs of fragments which appear to all make contact with the same baited fragment of interest. RESULTS: We hypothesised that these long runs could result from a smaller subset of direct contacts and propose a new method, based on a Bayesian sparse variable selection approach, which attempts to fine map these direct contacts. Our model is conceptually novel, exploiting the spatial pattern of counts in CHi-C data. Although we use only the CHi-C count data in fitting the model, we show that the fragments prioritised display biological properties that would be expected of true contacts: for bait fragments corresponding to gene promoters, we identify contact fragments with active chromatin and contacts that correspond to edges found in previously defined enhancer-target networks; conversely, for intergenic bait fragments, we identify contact fragments corresponding to promoters for genes expressed in that cell type. We show that long runs of apparently co-contacting fragments can typically be explained using a subset of direct contacts consisting of <10% of the number in the full run, suggesting that greater resolution can be extracted from existing datasets. CONCLUSIONS: Our results appear largely complementary to those from a per-fragment analytical approach, suggesting that they provide an additional level of interpretation that may be used to increase resolution for mapping direct contacts in CHi-C experiments.


Subject(s)
Chromatin/chemistry , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , CD4-Positive T-Lymphocytes , Macrophages , Models, Statistical , Promoter Regions, Genetic
15.
Nat Immunol ; 19(7): 674-684, 2018 07.
Article in English | MEDLINE | ID: mdl-29925982

ABSTRACT

Genome-wide association studies are transformative in revealing the polygenetic basis of common diseases, with autoimmune diseases leading the charge. Although the field is just over 10 years old, advances in understanding the underlying mechanistic pathways of these conditions, which result from a dense multifactorial blend of genetic, developmental and environmental factors, have already been informative, including insights into therapeutic possibilities. Nevertheless, the challenge of identifying the actual causal genes and pathways and their biological effects on altering disease risk remains for many identified susceptibility regions. It is this fundamental knowledge that will underpin the revolution in patient stratification, the discovery of therapeutic targets and clinical trial design in the next 20 years. Here we outline recent advances in analytical and phenotyping approaches and the emergence of large cohorts with standardized gene-expression data and other phenotypic data that are fueling a bounty of discovery and improved understanding of human physiology.


Subject(s)
Autoimmune Diseases/genetics , Autoimmune Diseases/microbiology , Chromosome Mapping , Genetic Variation , Genome-Wide Association Study , Humans , Infections/complications , Microbiota , Random Allocation , Sample Size
16.
Genome Biol ; 18(1): 165, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28870212

ABSTRACT

BACKGROUND: Autoimmune disease-associated variants are preferentially found in regulatory regions in immune cells, particularly CD4+ T cells. Linking such regulatory regions to gene promoters in disease-relevant cell contexts facilitates identification of candidate disease genes. RESULTS: Within 4 h, activation of CD4+ T cells invokes changes in histone modifications and enhancer RNA transcription that correspond to altered expression of the interacting genes identified by promoter capture Hi-C. By integrating promoter capture Hi-C data with genetic associations for five autoimmune diseases, we prioritised 245 candidate genes with a median distance from peak signal to prioritised gene of 153 kb. Just under half (108/245) prioritised genes related to activation-sensitive interactions. This included IL2RA, where allele-specific expression analyses were consistent with its interaction-mediated regulation, illustrating the utility of the approach. CONCLUSIONS: Our systematic experimental framework offers an alternative approach to candidate causal gene identification for variants with cell state-specific functional effects, with achievable sample sizes.


Subject(s)
Autoimmune Diseases/genetics , CD4-Positive T-Lymphocytes/immunology , Chromosome Mapping , Lymphocyte Activation/genetics , Promoter Regions, Genetic , Autoimmune Diseases/immunology , Chromatin , Enhancer Elements, Genetic , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Transcriptome
17.
Cell ; 167(5): 1369-1384.e19, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863249

ABSTRACT

Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases.


Subject(s)
Blood Cells/cytology , Disease/genetics , Promoter Regions, Genetic , Cell Lineage , Cell Separation , Chromatin , Enhancer Elements, Genetic , Epigenomics , Genetic Predisposition to Disease , Genome-Wide Association Study , Hematopoiesis , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci
18.
PLoS Genet ; 11(6): e1005272, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26106896

ABSTRACT

Identification of candidate causal variants in regions associated with risk of common diseases is complicated by linkage disequilibrium (LD) and multiple association signals. Nonetheless, accurate maps of these variants are needed, both to fully exploit detailed cell specific chromatin annotation data to highlight disease causal mechanisms and cells, and for design of the functional studies that will ultimately be required to confirm causal mechanisms. We adapted a Bayesian evolutionary stochastic search algorithm to the fine mapping problem, and demonstrated its improved performance over conventional stepwise and regularised regression through simulation studies. We then applied it to fine map the established multiple sclerosis (MS) and type 1 diabetes (T1D) associations in the IL-2RA (CD25) gene region. For T1D, both stepwise and stochastic search approaches identified four T1D association signals, with the major effect tagged by the single nucleotide polymorphism, rs12722496. In contrast, for MS, the stochastic search found two distinct competing models: a single candidate causal variant, tagged by rs2104286 and reported previously using stepwise analysis; and a more complex model with two association signals, one of which was tagged by the major T1D associated rs12722496 and the other by rs56382813. There is low to moderate LD between rs2104286 and both rs12722496 and rs56382813 (r2 ≃ 0:3) and our two SNP model could not be recovered through a forward stepwise search after conditioning on rs2104286. Both signals in the two variant model for MS affect CD25 expression on distinct subpopulations of CD4+ T cells, which are key cells in the autoimmune process. The results support a shared causal variant for T1D and MS. Our study illustrates the benefit of using a purposely designed model search strategy for fine mapping and the advantage of combining disease and protein expression data.


Subject(s)
Bayes Theorem , Chromosome Mapping/methods , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , Multiple Sclerosis/genetics , Algorithms , Chromosome Mapping/statistics & numerical data , Haplotypes , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Stochastic Processes
19.
Nat Commun ; 6: 7000, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25965853

ABSTRACT

Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease.


Subject(s)
ARNTL Transcription Factors/metabolism , Gene Expression Regulation/physiology , Genes, MHC Class II/physiology , Seasons , ARNTL Transcription Factors/genetics , Adaptation, Physiological , Adipose Tissue/metabolism , Adolescent , Adult , Aged , Child , Child, Preschool , Europe , Gambia , Humans , Infant , Infant, Newborn , Leukocytes/metabolism , Middle Aged , Oceania , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Young Adult
20.
Hum Mol Genet ; 24(12): 3305-13, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25743184

ABSTRACT

The genes and cells that mediate genetic associations identified through genome-wide association studies (GWAS) are only partially understood. Several studies that have investigated the genetic regulation of gene expression have shown that disease-associated variants are over-represented amongst expression quantitative trait loci (eQTL) variants. Evidence for colocalisation of eQTL and disease causal variants can suggest causal genes and cells for these genetic associations. Here, we used colocalisation analysis to investigate whether 595 genetic associations to ten immune-mediated diseases are consistent with a causal variant that regulates, in cis, gene expression in resting B cells, and in resting and stimulated monocytes. Previously published candidate causal genes were over-represented amongst genes exhibiting colocalisation (odds ratio > 1.5), and we identified evidence for colocalisation (posterior odds > 5) between cis eQTLs in at least one cell type and at least one disease for six genes: ADAM15, RGS1, CARD9, LTBR, CTSH and SYNGR1. We identified cell-specific effects, such as for CTSH, the expression of which in monocytes, but not in B cells, may mediate type 1 diabetes and narcolepsy associations in the chromosome 15q25.1 region. Our results demonstrate the utility of integrating genetic studies of disease and gene expression for highlighting causal genes and cell types.


Subject(s)
Bayes Theorem , Genome-Wide Association Study , Immune System Diseases/genetics , Quantitative Trait Loci , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...