ABSTRACT
Explosive bouts of diversification are one of the most conspicuous features of the tree of life. When such bursts are repeated in similar environments, it suggests some degree of predictability in the evolutionary process. We assess parallel adaptive radiation of South American pike cichlids (Crenicichla) using phylogenomics and phylogenetic comparative methods. We find that species flocks in the Uruguay and Iguazú River basins rapidly diversified into the same set of ecomorphs that reflect feeding ecology. Both adaptive radiations involve expansion of functional morphology, resulting in unique jaw phenotypes. Yet, form and function were decoupled such that most ecomorphs share similar mechanical properties of the jaws (i.e., jaw motion during a feeding strike). Prey mobility explained 6- to 9-fold differences in the rate of morphological evolution but had no effect on the rate of mechanical evolution. We find no evidence of gene flow between species flocks or with surrounding coastal lineages that may explain their rapid diversification. When compared with cichlids of the East African Great Lakes and other prominent adaptive radiations, pike cichlids share many themes, including the rapid expansion of phenotypic diversity, specialization along the benthic-to-pelagic habitat and soft-to-hard prey axes, and the evolution of conspicuous functional innovations. Yet, decoupled evolution of form and function and the absence of hybridization as a catalyzing force are departures from patterns observed in other adaptive radiations. Many-to-one mapping of morphology to mechanical properties is a mechanism by which pike cichlids attain a diversity of feeding ecologies while avoiding exacerbating underlying mechanical trade-offs. [Adaptive radiation; ecological opportunity; feeding kinematics; functional trade-off; hybridization; introgression.].
Subject(s)
Cichlids , Animals , Phylogeny , Cichlids/genetics , Ecosystem , Jaw/anatomy & histology , South America , Biological EvolutionABSTRACT
Islands are thought to facilitate adaptive radiation by providing release from competition and predation. Anole lizards are considered a classic example of this phenomenon: different ecological specialists ("ecomorphs") evolved in the Caribbean Greater Antilles (Cuba, Hispaniola, Jamaica, and Puerto Rico), resulting in convergent assemblages that are not observed in mainland Latin America. Yet, the role of islands in facilitating adaptive radiation is more often implied than directly tested, leaving uncertain the role of biogeography in stimulating diversification. Here, we assess the proposed "island effect" on anole diversification using Bayesian phylogenetic comparative methods that explicitly incorporate rate heterogeneity across the tree and demonstrate two cases of would be false positives. We discovered that rates of speciation and morphological evolution of island and mainland anoles are equivalent, implying that islands provide no special context for exceptionally rapid diversification. Likewise, rates of evolution were equivalent between island anoles that arose via in situ versus dispersal-based mechanisms, and we found no evidence for island-specific rates of speciation or morphological evolution. Nonetheless, the origin of Anolis is characterized by a speciation pulse that slowed over time-a classic signature of waning ecological opportunity. Our findings cast doubt on the notion that islands catalyzed the anole adaptive radiation and instead point to a key innovation, adhesive toe pads, which facilitated the exploitation of many arboreal niches sparsely utilized by other iguanian lizards. The selective pressures responsible for arboreal niche diversification differ between islands and the mainland, but the tempo of diversification driven by these discordant processes is indistinguishable. [Anolis; Caribbean; key innovation; morphological evolution; RevBayes; speciation.].
Subject(s)
Biodiversity , Lizards , Animals , Bayes Theorem , Lizards/classification , Phylogeny , Species Specificity , West IndiesABSTRACT
Parallel adaptive radiations have arisen following the colonization of islands by lizards and lakes by fishes. In these classic examples, parallel adaptive radiation is a response to the ecological opportunities afforded by the colonization of novel ecosystems and similar adaptive landscapes that favour the evolution of similar suites of ecomorphs, despite independent evolutionary histories. Here, we demonstrate that parallel adaptive radiations of cichlid fishes arose in South American rivers. Speciation-assembled communities of pike cichlids (Crenicichla) have independently diversified into similar suites of novel ecomorphs in the Uruguay and Paraná Rivers, including crevice feeders, periphyton grazers and molluscivores. There were bursts in phenotypic evolution associated with the colonization of each river and the subsequent expansion of morphospace following the evolution of the ecomorphs. These riverine clades demonstrate that characteristics emblematic of textbook parallel adaptive radiations of island- and lake-dwelling assemblages are feasible evolutionary outcomes even in labile ecosystems such as rivers.
Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Cichlids/genetics , Rivers , Animals , Cichlids/anatomy & histology , Ecosystem , Islands , Lakes , Phenotype , Phylogeny , Polymorphism, Single Nucleotide/genetics , Uruguay , Whole Genome SequencingABSTRACT
Alterations in natural landscapes, mainly caused by anthropic pressures, have been threatening the world's biomes, including aquatic environments and its biota. This study describes the diet of Bryconamericus iheringii, and how its body shape relates to environmental variables in populations of 22 streams. A wide array of food items were found, mainly composed of allochthonous plants (50.5%) and autochthonous invertebrates (25.2%). Even though food items remained almost the same, the predominant food group significantly differed among streams, mainly in relation to environmental characteristics. There was variation in body shape primarily associated with body depth and length of the pre-dorsal region; however, these differences did not correspond with streams. PLS-CA analyses indicated that environmental characteristics, such as substrate type, percentage of marginal vegetation have some influence over food items availability but not on body shape. This may be because B. iheringii is a non-specialist species capable of prey switching based on availability due to an intermediate body shape suited for generalist feeding habits.(AU)
Alterações em paisagens naturais, principalmente as causadas por pressão antrópica, tem ameaçado os biomas mundiais, incluindo ambientes aquáticos e sua biota. Este estudo descreve a dieta de B. iheringii e como seu formato corporal se relaciona com variáveis ambientais, em populações de 22 riachos. Uma grande variedade de itens alimentares foi encontrada, principalmente compostos por plantas alóctones (50,5%) e invertebrados autóctones (25,2%). Ainda que os itens alimentares tenham permanecido quase os mesmos, o grupo alimentar predominante diferiu significativamente entre riachos, principalmente devido a características ambientais. Ocorreu variação no formato corporal principalmente associado com profundidade do corpo e comprimento da região pré-dorsal; entretanto, tais diferenças não corresponderam aos agrupamentos por riacho. A análise PLS-CA indicou que as características ambientais, tais como tipo de substrato, porcentagem de vegetação marginal exercem alguma influência sobre a disponibilidade dos itens alimentares, mas não sobre o formato corporal. Isso pode ocorrer por B. iheringii ser uma espécie não especialista com capacidade de mudar suas presas de acordo a com disponibilidade das mesmas, isto, devido ao seu formato corporal intermediário adequado a hábitos generalistas.(AU)
Subject(s)
Animals , Body Composition/genetics , Characidae/anatomy & histology , EcosystemABSTRACT
Alterations in natural landscapes, mainly caused by anthropic pressures, have been threatening the world's biomes, including aquatic environments and its biota. This study describes the diet of Bryconamericus iheringii, and how its body shape relates to environmental variables in populations of 22 streams. A wide array of food items were found, mainly composed of allochthonous plants (50.5%) and autochthonous invertebrates (25.2%). Even though food items remained almost the same, the predominant food group significantly differed among streams, mainly in relation to environmental characteristics. There was variation in body shape primarily associated with body depth and length of the pre-dorsal region; however, these differences did not correspond with streams. PLS-CA analyses indicated that environmental characteristics, such as substrate type, percentage of marginal vegetation have some influence over food items availability but not on body shape. This may be because B. iheringii is a non-specialist species capable of prey switching based on availability due to an intermediate body shape suited for generalist feeding habits.(AU)
Alterações em paisagens naturais, principalmente as causadas por pressão antrópica, tem ameaçado os biomas mundiais, incluindo ambientes aquáticos e sua biota. Este estudo descreve a dieta de B. iheringii e como seu formato corporal se relaciona com variáveis ambientais, em populações de 22 riachos. Uma grande variedade de itens alimentares foi encontrada, principalmente compostos por plantas alóctones (50,5%) e invertebrados autóctones (25,2%). Ainda que os itens alimentares tenham permanecido quase os mesmos, o grupo alimentar predominante diferiu significativamente entre riachos, principalmente devido a características ambientais. Ocorreu variação no formato corporal principalmente associado com profundidade do corpo e comprimento da região pré-dorsal; entretanto, tais diferenças não corresponderam aos agrupamentos por riacho. A análise PLS-CA indicou que as características ambientais, tais como tipo de substrato, porcentagem de vegetação marginal exercem alguma influência sobre a disponibilidade dos itens alimentares, mas não sobre o formato corporal. Isso pode ocorrer por B. iheringii ser uma espécie não especialista com capacidade de mudar suas presas de acordo a com disponibilidade das mesmas, isto, devido ao seu formato corporal intermediário adequado a hábitos generalistas.(AU)
Subject(s)
Animals , Body Composition/genetics , Characidae/anatomy & histology , EcosystemABSTRACT
Innovations can facilitate bursts of diversification by increasing access to novel resources and the attainment of novel functional designs. Pharyngognathy, exhibited by highly diverse groups such as wrasses and cichlid fishes, is hypothesized to increase foraging capacity and efficiency. Here, I test the hypothesis that pharyngeal jaw shape and tooth morphology are adaptive in an ecologically diverse radiation of Neotropical cichlid fishes that spans North, Central and South America. I partitioned species into generalized trophic guilds using published stomach content analyses and quantified shape variation of the lower pharyngeal jaw (LPJ) using geometric morphometrics. Additionally, I tested for convergence in LPJ shape and trophic guild by mapping the phylogeny onto the principal components and testing for shifts towards similar evolutionary regimes. Major LPJ shape variation included the length and orientation (i.e. narrow or wide) of the lateral processes and length of the medial process, which varied based on the proportion of fishes and plants consumed. Pharyngeal tooth number, diversity and the frequency of tooth types were not evenly distributed among trophic guilds. There were seven distinct evolutionary regimes that converged upon four optima. Pharyngeal jaw diversification is associated with the exploitation of novel resources among Neotropical cichlids such that pharyngeal specialization has increased access to otherwise poorly accessible resources, such as resources that are difficult to crush (e.g. hard-shelled organisms) and assimilate (e.g. algae).
Subject(s)
Biodiversity , Biological Evolution , Cichlids/anatomy & histology , Cichlids/physiology , Jaw/anatomy & histology , Animals , Central America , Feeding Behavior , North America , Phylogeny , South AmericaABSTRACT
Ecological speciation is well-known from adaptive radiations in cichlid fishes inhabiting lentic ecosystems throughout the African rift valley and Central America. Here, we investigate the ecological and morphological diversification of a recently discovered lotic predatory Neotropical cichlid species flock in subtropical South America. We document morphological and functional diversification using geometric morphometrics, stable C and N isotopes, stomach contents and character evolution. This species flock displays species-specific diets and skull and pharyngeal jaw morphology. Moreover, this lineage appears to have independently evolved away from piscivory multiple times and derived forms are highly specialized morphologically and functionally relative to ancestral states. Ecological speciation played a fundamental role in this radiation and our data reveal novel conditions of ecological speciation including a species flock that evolved: 1) in a piscivorous lineage, 2) under lotic conditions and 3) with pronounced morphological novelties, including hypertrophied lips that appear to have evolved rapidly.