Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36013958

ABSTRACT

Caliciviridae is a family of viral pathogens that naturally infects vertebrates, including humans, and causes a range of highly contagious infectious diseases. Caliciviruses are not well studied because of the lack of a universal approach to their cultivation; however, the development of molecular genetics and bioinformatics methods can shed light on their genetic architecture and evolutionary relationships. Here, we present and characterize the complete genome sequence of calicivirus isolated from a sandpiper-Temminck's stint (Calidris temminckii), preliminarily named Temminck's stint calicivirus (TsCV). Its genome is a linear, non-segmented, single-stranded (+sense) RNA with genome organization typical of avian caliciviruses. Comparative studies have shown significant divergence of the nucleotide sequence of the TsCV genome, as well as the amino acid sequence of the major capsid protein from all publicly available genomic and protein sequences, with the highest genome sequence similarity to unclassified Ruddy turnstone calicivirus A (43.68%) and the lowest pairwise divergence of the major capsid protein with unclassified goose calicivirus (57.44%). Phylogenetic analysis, as well as a comparative analysis of the homologous proteins, showed evidence of another separate genus within the Caliciviridae family-previously proposed, but not yet accepted by International Committee on Taxonomy of Viruses (ICTV)-the Sanovirus genus, which combines seven previously unclassified genomic sequences of avian caliciviruses, including the newly discovered TsCV, which we propose to consider as a separate species.

2.
Genome Biol Evol ; 13(7)2021 07 06.
Article in English | MEDLINE | ID: mdl-34037779

ABSTRACT

In a wide range of taxa, proteins encoded by mitochondrial genomes are involved in adaptation to lifestyle that requires oxygen starvation or elevation of metabolism rate. It remains poorly understood to what extent adaptation to similar conditions is associated with parallel changes in these proteins. We search for a genetic signal of parallel or convergent evolution in recurrent molecular adaptation to high altitude, migration, diving, wintering, unusual flight abilities, or loss of flight in mitochondrial genomes of birds. Developing on previous work, we design an approach for the detection of recurrent coincident changes in genotype and phenotype, indicative of an association between the two. We describe a number of candidate sites involved in recurrent adaptation in ND genes. However, we find that the majority of convergence events can be explained by random coincidences without invoking adaptation.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial , Adaptation, Physiological/genetics , Animals , Birds/genetics , Mitochondria/genetics
3.
Microorganisms ; 10(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35056480

ABSTRACT

Discovery and study of viruses carried by migratory birds are tasks of high importance due to the host's ability to spread infectious diseases over significant distances. With this paper, we present and characterize the first complete genome sequence of atadenovirus from a tern bird (common tern, Sterna hirundo) preliminarily named tern atadenovirus 1 (TeAdV-1). TeAdV-1 genome is a linear double-stranded DNA molecule, 31,334 base pairs which contain 30 methionine-initiated open reading frames with gene structure typical for Atadenovirus genus, and the shortest known inverted terminal repeats (ITRs) within the Atadenovirus genus consisted of 25 bases. The nucleotide composition of the genome is characterized by a low G + C content (33.86%), which is the most AT-rich genome of known avian adenoviruses within Atadenovirus genus. The nucleotide sequence of the TeAdV-1 genome shows high divergence compared to known representatives of the Atadenovirus genus with the highest similarity to the duck atadenovirus 1 (53.7%). Phylogenetic analysis of the protein sequences of core genes confirms the taxonomic affiliation of the new representative to the genus Atadenovirus with the degree of divergence from the known representatives exceeding the interspecies distance within the genus. Thereby we proposed a novel TeAdV-1 to be considered as a separate species.

4.
Genome Biol Evol ; 12(9): 1493-1503, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32653919

ABSTRACT

Repeated emergence of similar adaptations is often explained by parallel evolution of underlying genes. However, evidence of parallel evolution at amino acid level is limited. When the analyzed species are highly divergent, this can be due to epistatic interactions underlying the dynamic nature of the amino acid preferences: The same amino acid substitution may have different phenotypic effects on different genetic backgrounds. Distantly related species also often inhabit radically different environments, which makes the emergence of parallel adaptations less likely. Here, we hypothesize that parallel molecular adaptations are more prevalent between closely related species. We analyze the rate of parallel evolution in genome-size sets of orthologous genes in three groups of species with widely ranging levels of divergence: 46 species of the relatively recent lake Baikal amphipod radiation, a species flock of very closely related cichlids, and a set of significantly more divergent vertebrates. Strikingly, in genes of amphipods, the rate of parallel substitutions at nonsynonymous sites exceeded that at synonymous sites, suggesting rampant selection driving parallel adaptation. At sites of parallel substitutions, the intraspecies polymorphism is low, suggesting that parallelism has been driven by positive selection and is therefore adaptive. By contrast, in cichlids, the rate of nonsynonymous parallel evolution was similar to that at synonymous sites, whereas in vertebrates, this rate was lower than that at synonymous sites, indicating that in these groups of species, parallel substitutions are mainly fixed by drift.


Subject(s)
Amphipoda/genetics , Cichlids/genetics , Evolution, Molecular , Africa, Eastern , Amino Acid Substitution , Animals , Lakes , Phylogeny , Polymorphism, Genetic , Russia
5.
BMC Genomics ; 20(1): 710, 2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31510914

ABSTRACT

BACKGROUND: Chlamydia are ancient intracellular pathogens with reduced, though strikingly conserved genome. Despite their parasitic lifestyle and isolated intracellular environment, these bacteria managed to avoid accumulation of deleterious mutations leading to subsequent genome degradation characteristic for many parasitic bacteria. RESULTS: We report pan-genomic analysis of sixteen species from genus Chlamydia including identification and functional annotation of orthologous genes, and characterization of gene gains, losses, and rearrangements. We demonstrate the overall genome stability of these bacteria as indicated by a large fraction of common genes with conserved genomic locations. On the other hand, extreme evolvability is confined to several paralogous gene families such as polymorphic membrane proteins and phospholipase D, and likely is caused by the pressure from the host immune system. CONCLUSIONS: This combination of a large, conserved core genome and a small, evolvable periphery likely reflect the balance between the selective pressure towards genome reduction and the need to adapt to escape from the host immunity.


Subject(s)
Adaptation, Physiological/genetics , Chlamydia/genetics , Chlamydia/physiology , Genomics , Host-Pathogen Interactions/genetics , Selection, Genetic , Evolution, Molecular , Genome, Bacterial/genetics , Molecular Sequence Annotation
SELECTION OF CITATIONS
SEARCH DETAIL
...