Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Cell Proteomics ; 23(3): 100718, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224738

ABSTRACT

A functional role has been ascribed to the human dihydrofolate reductase 2 (DHFR2) gene based on the enzymatic activity of recombinant versions of the predicted translated protein. However, the in vivo function is still unclear. The high amino acid sequence identity (92%) between DHFR2 and its parental homolog, DHFR, makes analysis of the endogenous protein challenging. This paper describes a targeted mass spectrometry proteomics approach in several human cell lines and tissue types to identify DHFR2-specific peptides as evidence of its translation. We show definitive evidence that the DHFR2 activity in the mitochondria is in fact mediated by DHFR, and not DHFR2. Analysis of Ribo-seq data and an experimental assessment of ribosome association using a sucrose cushion showed that the two main Ensembl annotated mRNA isoforms of DHFR2, 201 and 202, are differentially associated with the ribosome. This indicates a functional role at both the RNA and protein level. However, we were unable to detect DHFR2 protein at a detectable level in most cell types examined despite various RNA isoforms of DHFR2 being relatively abundant. We did detect a DHFR2-specific peptide in embryonic heart, indicating that the protein may have a specific role during embryogenesis. We propose that the main functionality of the DHFR2 gene in adult cells is likely to arise at the RNA level.


Subject(s)
RNA , Tetrahydrofolate Dehydrogenase , Humans , Cell Line , Peptides/metabolism , Protein Biosynthesis , Ribosomes/metabolism , RNA/metabolism , RNA, Messenger/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
2.
Front Cell Dev Biol ; 10: 853451, 2022.
Article in English | MEDLINE | ID: mdl-35721503

ABSTRACT

Arteriosclerosis is an important age-dependent disease that encompasses atherosclerosis, in-stent restenosis (ISR), pulmonary hypertension, autologous bypass grafting and transplant arteriosclerosis. Endothelial dysfunction and the proliferation of vascular smooth muscle cell (vSMC)-like cells is a critical event in the pathology of arteriosclerotic disease leading to intimal-medial thickening (IMT), lipid retention and vessel remodelling. An important aspect in guiding clinical decision-making is the detection of biomarkers of subclinical arteriosclerosis and early cardiovascular risk. Crucially, relevant biomarkers need to be good indicators of injury which change in their circulating concentrations or structure, signalling functional disturbances. Extracellular vesicles (EVs) are nanosized membraneous vesicles secreted by cells that contain numerous bioactive molecules and act as a means of intercellular communication between different cell populations to maintain tissue homeostasis, gene regulation in recipient cells and the adaptive response to stress. This review will focus on the emerging field of EV research in cardiovascular disease (CVD) and discuss how key EV signatures in liquid biopsies may act as early pathological indicators of adaptive lesion formation and arteriosclerotic disease progression. EV profiling has the potential to provide important clinical information to complement current cardiovascular diagnostic platforms that indicate or predict myocardial injury. Finally, the development of fitting devices to enable rapid and/or high-throughput exosomal analysis that require adapted processing procedures will be evaluated.

3.
Stem Cell Rev Rep ; 17(5): 1713-1740, 2021 10.
Article in English | MEDLINE | ID: mdl-33730327

ABSTRACT

A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening and lesion formation. While medial SMCs contribute to vascular lesions, the involvement of resident vascular stem cells (vSCs) remains unclear. We evaluated single cell photonics as a discriminator of cell phenotype in vitro before the presence of vSC within vascular lesions was assessed ex vivo using supervised machine learning and further validated using lineage tracing analysis. Using a novel lab-on-a-Disk(Load) platform, label-free single cell photonic emissions from normal and injured vessels ex vivo were interrogated and compared to freshly isolated aortic SMCs, cultured Movas SMCs, macrophages, B-cells, S100ß+ mVSc, bone marrow derived mesenchymal stem cells (MSC) and their respective myogenic progeny across five broadband light wavelengths (λ465 - λ670 ± 20 nm). We found that profiles were of sufficient coverage, specificity, and quality to clearly distinguish medial SMCs from different vascular beds (carotid vs aorta), discriminate normal carotid medial SMCs from lesional SMC-like cells ex vivo following flow restriction, and identify SMC differentiation of a series of multipotent stem cells following treatment with transforming growth factor beta 1 (TGF- ß1), the Notch ligand Jagged1, and Sonic Hedgehog using multivariate analysis, in part, due to photonic emissions from enhanced collagen III and elastin expression. Supervised machine learning supported genetic lineage tracing analysis of S100ß+ vSCs and identified the presence of S100ß+vSC-derived myogenic progeny within vascular lesions. We conclude disease-relevant photonic signatures may have predictive value for vascular disease.


Subject(s)
Muscle, Smooth, Vascular , Optics and Photonics , Hedgehog Proteins , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , S100 Calcium Binding Protein beta Subunit/metabolism , Stem Cells/metabolism
4.
NPJ Regen Med ; 6(1): 10, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649337

ABSTRACT

A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal thickening. While medial SMCs contribute, the participation of hedgehog-responsive resident vascular stem cells (vSCs) to lesion formation remains unclear. Using transgenic eGFP mice and genetic lineage tracing of S100ß vSCs in vivo, we identified S100ß/Sca1 cells derived from a S100ß non-SMC parent population within lesions that co-localise with smooth muscle α-actin (SMA) cells following iatrogenic flow restriction, an effect attenuated following hedgehog inhibition with the smoothened inhibitor, cyclopamine. In vitro, S100ß/Sca1 cells isolated from atheroprone regions of the mouse aorta expressed hedgehog signalling components, acquired the di-methylation of histone 3 lysine 4 (H3K4me2) stable SMC epigenetic mark at the Myh11 locus and underwent myogenic differentiation in response to recombinant sonic hedgehog (SHh). Both S100ß and PTCH1 cells were present in human vessels while S100ß cells were enriched in arteriosclerotic lesions. Recombinant SHh promoted myogenic differentiation of human induced pluripotent stem cell-derived S100ß neuroectoderm progenitors in vitro. We conclude that hedgehog-responsive S100ß vSCs contribute to lesion formation and support targeting hedgehog signalling to treat subclinical arteriosclerosis.

5.
Alcohol Clin Exp Res ; 44(9): 1734-1746, 2020 09.
Article in English | MEDLINE | ID: mdl-32671866

ABSTRACT

BACKGROUND: Stem cells present in the vessel wall may be triggered in response to injurious stimuli to undergo differentiation and contribute to vascular disease development. Our aim was to determine the effect of moderate alcohol (EtOH) exposure on the expansion and differentiation of S100 calcium-binding protein B positive (S100ß+ ) resident vascular stem cells and their contribution to pathologic vessel remodeling in a mouse model of arteriosclerosis. METHODS AND RESULTS: Lineage tracing analysis of S100ß+ cells was performed in male and female S100ß-eGFP/Cre/ERT2-dTomato transgenic mice treated daily with or without EtOH by oral gavage (peak BAC: 15 mM or 0.07%) following left common carotid artery ligation for 14 days. Carotid arteries (ligated or sham-operated) were harvested for morphological analysis and confocal assessment of fluorescent-tagged S100 ß + cells in FFPE carotid cross sections. Ligation-induced carotid remodeling was more robust in males than in females. EtOH-gavaged mice had less adventitial thickening and markedly reduced neointimal formation compared to controls, with a more pronounced inhibitory effect in males compared to females. There was significant expansion of S100ß+ -marked cells in vessels postligation, primarily in the neointimal compartment. EtOH treatment reduced the fraction of S100ß+ cells in carotid cross sections, concomitant with attenuated remodeling. In vitro, EtOH attenuated Sonic Hedgehog-stimulated myogenic differentiation (as evidenced by reduced calponin and myosin heavy chain expression) of isolated murine S100ß+ vascular stem cells. CONCLUSIONS: These data highlight resident vascular S100ß+ stem cells as a novel target population for alcohol and suggest that regulation of these progenitors in adult arteries, particularly in males, may be an important mechanism contributing to the antiatherogenic effects of moderate alcohol consumption.


Subject(s)
Arteriosclerosis/pathology , Carotid Artery, Common/drug effects , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Multipotent Stem Cells/drug effects , S100 Calcium Binding Protein beta Subunit/metabolism , Vascular Remodeling/drug effects , Alcohol Drinking , Animals , Arteriosclerosis/metabolism , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Carotid Artery, Common/metabolism , Carotid Artery, Common/pathology , Ligation , Mice , Mice, Transgenic , Microscopy, Confocal , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/pathology , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Neointima/metabolism , Neointima/pathology
7.
Front Cardiovasc Med ; 6: 89, 2019.
Article in English | MEDLINE | ID: mdl-31428618

ABSTRACT

Arteriosclerosis causes significant morbidity and mortality worldwide. Central to this process is the development of subclinical non-atherosclerotic intimal lesions before the appearance of pathologic intimal thickening and advanced atherosclerotic plaques. Intimal thickening is associated with several risk factors, including oxidative stress due to reactive oxygen species (ROS), inflammatory cytokines and lipid. The main ROS producing systems in-vivo are reduced nicotinamide dinucleotide phosphate (NADPH) oxidase (NOX). ROS effects are context specific. Exogenous ROS induces apoptosis and senescence, whereas intracellular ROS promotes stem cell differentiation, proliferation, and migration. Lineage tracing studies using murine models of subclinical atherosclerosis have revealed the contributory role of medial smooth muscle cells (SMCs), resident vascular stem cells, circulating bone-marrow progenitors and endothelial cells that undergo endothelial-mesenchymal-transition (EndMT). This review will address the putative physiological and patho-physiological roles of ROS in controlling vascular cell fate and ROS contribution to vascular regeneration and disease progression.

8.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 343-353, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29146399

ABSTRACT

The accumulation of vascular smooth muscle (SMC)-like cells and stem cell-derived myogenic and osteogenic progeny contributes significantly to arteriosclerotic disease. This study established whether label-free vibrational spectroscopy can discriminate de-differentiated 'synthetic' SMCs from undifferentiated stem cells and their myogenic and osteogenic progeny in vitro, compared with conventional immunocytochemical and genetic analyses. TGF-ß1- and Jagged1-induced myogenic differentiation of CD44+ mesenchymal stem cells was confirmed in vitro by immunocytochemical analysis of specific SMC differentiation marker expression (α-actin, calponin and myosin heavy chain 11), an epigenetic histone mark (H3K4me2) at the myosin heavy chain 11 locus, promoter transactivation and mRNA transcript levels. Osteogenic differentiation was confirmed by alizarin red staining of calcium deposition. Fourier Transform Infrared (FTIR) maps facilitated initial screening and discrimination while Raman spectroscopy of individual cell nuclei revealed specific spectral signatures of each cell type in vitro, using Principal Components Analysis (PCA). PCA fed Linear Discriminant Analysis (LDA) enabled quantification of this discrimination and the sensitivity and specificity value was determined for all cell populations based on a leave-one-out cross validation method and revealed that de-differentiated SMCs and stem-cell derived myogenic progeny in culture shared the greatest similarity. FTIR and Raman spectroscopy discriminated undifferentiated stem cells from both their myogenic and osteogenic progeny. The ability to detect stem cell-derived myogenic progeny using label-free platforms in situ may facilitate interrogation of these important phenotypes during vascular disease progression.


Subject(s)
Cell Dedifferentiation , Mesenchymal Stem Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neovascularization, Physiologic , Osteogenesis , Animals , Mesenchymal Stem Cells/cytology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Rats , Rats, Sprague-Dawley , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
9.
Antioxidants (Basel) ; 6(4)2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29135921

ABSTRACT

The generation of reactive oxygen species (ROS) and an imbalance of antioxidant defence mechanisms can result in oxidative stress. Several pro-atherogenic stimuli that promote intimal-medial thickening (IMT) and early arteriosclerotic disease progression share oxidative stress as a common regulatory pathway dictating vascular cell fate. The major source of ROS generated within the vascular system is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (Nox), of which seven members have been characterized. The Nox family are critical determinants of the redox state within the vessel wall that dictate, in part the pathophysiology of several vascular phenotypes. This review highlights the putative role of ROS in controlling vascular fate by promoting endothelial dysfunction, altering vascular smooth muscle phenotype and dictating resident vascular stem cell fate, all of which contribute to intimal medial thickening and vascular disease progression.

10.
Alcohol Clin Exp Res ; 41(12): 2051-2065, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28921619

ABSTRACT

BACKGROUND: Cell and molecular mechanisms mediating the cardiovascular effects of alcohol are not fully understood. Our aim was to determine the effect of moderate ethanol (EtOH) on sonic hedgehog (SHh) signaling in regulating possible stem cell antigen-1 positive (Sca1+ ) progenitor stem cell involvement during pathologic arterial remodeling. METHODS: Partial ligation or sham operation of the left carotid artery was performed in transgenic Sca1-enhanced green fluorescent protein (eGFP) mice gavaged with or without "daily moderate" EtOH. RESULTS: The EtOH group had reduced adventitial thickening and less neointimal formation, compared to ligated controls. There was expansion of eGFP-expressing (i.e., Sca1+ ) cells in remodeled vessels postligation (day 14), especially in the neo intima. EtOH treatment reduced the number of Sca1+ cells in ligated vessel cross-sections concomitant with diminished remodeling, compared to control ligated vessels. Moreover, EtOH attenuated SHh signaling in injured carotids as determined by immunohistochemical analysis of the target genes patched 1 and Gli2, and RT-PCR of whole-vessel Gli2 mRNA levels. Intraperitoneal injection of ligated Sca1-eGFP mice with the SHh signaling inhibitor cyclopamine diminished SHh target gene expression, reduced the number of Sca1+ cells, and ameliorated carotid remodeling. EtOH treatment of purified Sca1+ adventitial progenitor stem cells in vitro inhibited SHh signaling, and their rSHh-induced differentiation to vascular smooth muscle cells. CONCLUSIONS: EtOH reduces SHh-responsive Sca1+ progenitor cell myogenic differentiation/expansion in vitro and during arterial remodeling in response to ligation injury in vivo. Regulation of vascular Sca1+ progenitor cells in this way may be an important novel mechanism contributing to alcohol's cardiovascular protective effects.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Hedgehog Proteins/physiology , Stem Cells/physiology , Vascular Remodeling/drug effects , Vascular Remodeling/physiology , Animals , Antigens, Ly/immunology , Carotid Arteries/drug effects , Carotid Arteries/physiopathology , Cell Proliferation/physiology , Gene Expression/drug effects , Hedgehog Proteins/drug effects , Membrane Proteins/immunology , Mice , Mice, Transgenic , Patched-1 Receptor/biosynthesis , Stem Cells/immunology , Veratrum Alkaloids/pharmacology , Zinc Finger Protein Gli2/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...