Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS Pathog ; 13(6): e1006476, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28662171

ABSTRACT

Citrobacter rodentium infection is a mouse model for the important human diarrheal infection caused by enteropathogenic E. coli (EPEC). The pathogenesis of both species is very similar and depends on their unique ability to form intimately epithelium-adherent microcolonies, also known as "attachment/effacement" (A/E) lesions. These microcolonies must be dynamic and able to self-renew by continuous re-infection of the rapidly regenerating epithelium. It is unknown whether sustained epithelial A/E lesion pathogenesis is achieved through re-infection by planktonic bacteria from the luminal compartment or local spread of sessile bacteria without a planktonic phase. Focusing on the earliest events as C. rodentium becomes established, we show here that all colonic epithelial A/E microcolonies are clonal bacterial populations, and thus depend on local clonal growth to persist. In wild-type mice, microcolonies are established exclusively within the first 18 hours of infection. These early events shape the ongoing intestinal geography and severity of infection despite the continuous presence of phenotypically virulent luminal bacteria. Mechanistically, induced resistance to A/E lesion de-novo formation is mediated by TLR-MyD88/Trif-dependent signaling and is induced specifically by virulent C. rodentium in a virulence gene-dependent manner. Our data demonstrate that the establishment phase of C. rodentium pathogenesis in vivo is restricted to a very short window of opportunity that determines both disease geography and severity.


Subject(s)
Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Immunity, Innate/immunology , Animals , Citrobacter rodentium/pathogenicity , Colon/microbiology , Disease Models, Animal , Enteropathogenic Escherichia coli/immunology , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/metabolism , Mice, Inbred C57BL , Virulence/immunology
2.
PLoS One ; 11(3): e0151872, 2016.
Article in English | MEDLINE | ID: mdl-27002976

ABSTRACT

Soon after birth the mammalian gut microbiota forms a permanent and collectively highly resilient consortium. There is currently no robust method for re-deriving an already microbially colonized individual again-germ-free. We previously developed the in vivo growth-incompetent E. coli K-12 strain HA107 that is auxotrophic for the peptidoglycan components D-alanine (D-Ala) and meso-diaminopimelic acid (Dap) and can be used to transiently associate germ-free animals with live bacteria, without permanent loss of germ-free status. Here we describe the translation of this experimental model from the laboratory-adapted E. coli K-12 prototype to the better gut-adapted commensal strain E. coli HS. In this genetic background it was necessary to complete the D-Ala auxotrophy phenotype by additional knockout of the hypothetical third alanine racemase metC. Cells of the resulting fully auxotrophic strain assembled a peptidoglycan cell wall of normal composition, as long as provided with D-Ala and Dap in the medium, but could not proliferate a single time after D-Ala/Dap removal. Yet, unsupplemented bacteria remained active and were able to complete their cell cycle with fully sustained motility until immediately before autolytic death. Also in vivo, the transiently colonizing bacteria retained their ability to stimulate a live-bacteria-specific intestinal Immunoglobulin (Ig)A response. Full D-Ala auxotrophy enabled rapid recovery to again-germ-free status. E. coli HS has emerged from human studies and genomic analyses as a paradigm of benign intestinal commensal E. coli strains. Its reversibly colonizing derivative may provide a versatile research tool for mucosal bacterial conditioning or compound delivery without permanent colonization.


Subject(s)
Alanine/metabolism , Cell Wall/metabolism , Diaminopimelic Acid/metabolism , Escherichia coli K12/metabolism , Gastrointestinal Tract , Alanine Racemase/genetics , Animals , Autolysis/metabolism , Escherichia coli K12/genetics , Escherichia coli K12/immunology , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Germ-Free Life , Humans , Immunoglobulin A/immunology , Mice , Mice, Inbred C57BL , Microbial Consortia , Models, Animal , Peptidoglycan/metabolism , Symbiosis
3.
Chem Commun (Camb) ; 50(55): 7254-7, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24870379

ABSTRACT

Redesigning linear cell penetrating peptides (CPPs) into a multi-branched topology with short dipeptide branches gave cell penetrating peptide dendrimers (CPPDs) with higher cell penetration, lower toxicity and hemolysis and higher serum stability than linear CPPs. Their use is demonstrated by delivering a cytotoxic peptide and paclitaxel into cells.


Subject(s)
Dendrimers/metabolism , Endocytosis , Peptides/metabolism , Amino Acid Sequence , Molecular Sequence Data , Peptides/chemistry
4.
Org Biomol Chem ; 11(39): 6717-33, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23933745

ABSTRACT

Cell penetrating peptides (CPP) are peptides of 10 to 30 residues derived from natural translocating proteins. Multivalency is known to enhance cellular uptake for the Tat peptide and closely related polycationic sequences. To test whether multivalency effects on cellular uptake might also occur with other CPP types, we prepared multivalent versions of the strongly cationic Tat, the amphipathic sequences Antp, pVEC and TP10, and the polyproline helix SAP by convergent thioether ligation of the linear CPP onto multivalent scaffolds, and evaluated their uptake in HeLa and CHO cells, intracellular localization, cytotoxicity and hemolysis. While multivalency did not increase the cellular uptake of pVEC or SAP, multivalency effects on uptake comparable to Tat were observed with TP10 and Antp, which are attributable to their polycationic nature. The efficient synthetic protocol for these divalent CPP and their localization in the cytoplasm suggest that CPP might be useful for application in cargo delivery into cells.


Subject(s)
Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Amino Acid Sequence , Animals , CHO Cells , Cell-Penetrating Peptides/genetics , Circular Dichroism , Cricetulus , Flow Cytometry , HeLa Cells , Humans , Molecular Sequence Data , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...