Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Faraday Discuss ; 224(0): 292-308, 2020 12 04.
Article in English | MEDLINE | ID: mdl-32955053

ABSTRACT

Following the development in recent years of progressively more accurate approximations to the exchange-correlation functional, the use of density functional theory (DFT) methods to examine increasingly large and complex systems has grown, in particular for solids and other condensed matter systems. However the cost of these calculations is high, often requiring the use of specialist HPC facilities. As such, for the purpose of large-scale high-throughput screening of material properties, a hierarchy of simplified DFT methods has been proposed that allows rapid electronic structure calculation of large systems, and we have recently extended this scheme to the solid state (sol-3c). Here, we analyze the applicability and scaling of the new sol-3c DFT methods to molecules and crystals composed of light-elements, such as small proteins and model DNA-helices. Furthermore, the calculation of the electronic structure of large to very large porous systems, such as metal-organic frameworks and inorganic nanoparticles, is discussed. The new composite methods have been implemented in the CRYSTAL17 code, which efficiently implements hybrid functionals and enables routine application of the new methods to large-scale calculations of such materials with excellent performance, even with small-scale computing resources.


Subject(s)
Cost-Benefit Analysis , Density Functional Theory , Metal-Organic Frameworks/chemistry
2.
Appl Opt ; 22(15): 2329-36, 1983 Aug 01.
Article in English | MEDLINE | ID: mdl-18196133

ABSTRACT

A system has been developed to accurately detect phase signals produced in optical interferometric sensors. The system employs optical heterodyning and synchronously detects optical phase by feeding back an error signal to a phase modulator in the reference leg of the interferometer. This system is seen to have properties similar to a phase-locked loop. The system is mathematically analyzed and a simple second-order model developed which accurately predicts the system response.

3.
Opt Lett ; 7(9): 460-2, 1982 Sep 01.
Article in English | MEDLINE | ID: mdl-19714056

ABSTRACT

The pressure sensitivity of the phase of light propagating in a single-mode fiber coated with a thin nickel jacket is determined both analytically and experimentally. The measured acoustic response of the fiber is found to be 1 order of magnitude lower than that of the bare fiber, in agreement with analytical predictions. The technique thus appears to be a promising way for desensitizing optical-fiber leads for use with fiber-optic sensors.

SELECTION OF CITATIONS
SEARCH DETAIL