Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36364264

ABSTRACT

The Menshutkin reaction represents the alkylation of tertiary amines by alkyl halide where the reactants are neutral and the products, quaternary ammonium salts, are two ions with opposite signs. The most commonly used organic solvents in quaternization reactions are volatile organic solvents (VOSs), namely acetone, anhydrous benzene, dry dichloromethane (DCM), dimethylformamide (DMF) and acetonitrile (ACN). The purpose of this work was to examine eutectic solvents as a "greener" alternative to conventional solvents so that quaternization reactions take place in accordance with the principles of green chemistry. Herein, sixteen eutectic solvents were used as replacements for volatile organic ones in quaternization reactions of isonicotinamide with substituted phenacyl bromides. The reactions were carried out at 80 °C by three synthetic approaches: conventional (4-6 h), microwave (20 min) and ultrasound (3 h). Microwave-assisted organic reactions produced the highest yields, where in several reactions, the yield was almost quantitative. The most suitable eutectic solvents were based on choline chloride (ChCl) as the hydrogen bond acceptor (HBA) and glycerol, oxalic or levulinic acid as hydrogen bond donors (HBDs). The benefits of these three deep eutectic solvents (DESs) as a medium for quaternization reactions are the simplicity of their preparation for large-scale production, with inexpensive, available and nontoxic starting materials, as well as their biodegradability.


Subject(s)
Choline , Deep Eutectic Solvents , Choline/chemistry , Solvents/chemistry , Glycerol/chemistry , Hydrogen Bonding
2.
Int J Mol Sci ; 23(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36362178

ABSTRACT

Seven pyridoxal dioxime quaternary salts (1-7) were synthesized with the aim of studying their interactions with human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The synthesis was achieved by the quaternization of pyridoxal monooxime with substituted 2-bromoacetophenone oximes (phenacyl bromide oximes). All compounds, prepared in good yields (43-76%) and characterized by 1D and 2D NMR spectroscopy, were evaluated as reversible inhibitors of cholinesterase and/or reactivators of enzymes inhibited by toxic organophosphorus compounds. Their potency was compared with that of their monooxime analogues and medically approved oxime HI-6. The obtained pyridoxal dioximes were relatively weak inhibitors for both enzymes (Ki = 100-400 µM). The second oxime group in the structure did not improve the binding compared to the monooxime analogues. The same was observed for reactivation of VX-, tabun-, and paraoxon-inhibited AChE and BChE, where no significant efficiency burst was noted. In silico analysis and molecular docking studies connected the kinetic data to the structural features of the tested compound, showing that the low binding affinity and reactivation efficacy may be a consequence of a bulk structure hindering important reactive groups. The tested dioximes were non-toxic to human neuroblastoma cells (SH-SY5Y) and human embryonal kidney cells (HEK293).


Subject(s)
Cholinesterase Reactivators , Neuroblastoma , Humans , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/chemistry , Molecular Docking Simulation , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , HEK293 Cells , Oximes/pharmacology , Oximes/chemistry , Pyridoxal , Ligands
3.
Int J Mol Sci ; 21(21)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138280

ABSTRACT

We evaluated the potential of nine vitamin B3 scaffold-based derivatives as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors, as a starting point for the development of novel drugs for treating disorders with cholinergic neurotransmission-linked pathology. As the results indicate, all compounds reversibly inhibited both enzymes in the micromolar range pointing to the preference of AChE over BChE for binding the tested derivatives. Molecular docking studies revealed the importance of interactions with AChE active site residues Tyr337 and Tyr124, which dictated most of the observed differences. The most potent inhibitor of both enzymes with Ki of 4 µM for AChE and 8 µM for BChE was the nicotinamide derivative 1-(4'-phenylphenacyl)-3-carbamoylpyridinium bromide. Such a result places it within the range of several currently studied novel cholinesterase inhibitors. Cytotoxicity profiling did not classify this compound as highly toxic, but the induced effects on cells should not be neglected in any future detailed studies and when considering this scaffold for drug development.


Subject(s)
Butyrylcholinesterase/chemistry , Cell Proliferation , Cholinesterase Inhibitors/pharmacology , Neuroblastoma/pathology , Niacinamide/chemistry , Acetylcholinesterase , Catalytic Domain , Cholinesterase Inhibitors/chemistry , GPI-Linked Proteins/antagonists & inhibitors , Humans , Molecular Docking Simulation , Neuroblastoma/drug therapy , Neuroblastoma/enzymology , Structure-Activity Relationship , Tumor Cells, Cultured
4.
Molecules ; 24(6)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30871137

ABSTRACT

The quaternization reactions of nicotinamide, with different electrophiles: methyl iodide and substituted 2-bromoacetophenones (4-Cl, 4-Br, 4-H, 4-CH3, 4-F, 4-OCH3, 4-Ph, 2-OCH3, 4-NO2) are reported. The preparations were carried out by conventional synthesis and under microwave irradiation in absolute ethanol and acetone. The synthesis performed by microwave dielectric heating significantly improved yield, up to 8 times, and shortened down the reaction time from ca. one day in conventional, to 10⁻20 min. The structures of the synthesized compounds were confirmed by IR, ¹H- and 13C-NMR spectroscopy, mass spectrometry and elemental analysis. The compounds have been screened for antifungal activities against Fusarium oxysporum, Fusarium culmorum, Macrophomina phaseolina and Sclerotinia sclerotiorum at concentrations of 10 µg/mL and 100 µg/mL. Six compounds showed the strong inhibition of mycelium growth at a concentration of 10 µg/mL. All tested compounds revealed the great inhibitory activities against S. sclerotiorum at a concentration of 100 µg/mL.


Subject(s)
Antifungal Agents/chemical synthesis , Ascomycota/drug effects , Fusarium/drug effects , Niacinamide/analogs & derivatives , Pyridines/chemical synthesis , Acetophenones/chemistry , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Hydrocarbons, Iodinated/chemistry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Microwaves , Molecular Structure , Niacinamide/chemistry , Pyridines/chemistry , Pyridines/pharmacology
5.
Toxicol Lett ; 262: 114-122, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27693733

ABSTRACT

Organophosphorus (OP) nerve agents (sarin, tabun VX and soman) inhibit the enzyme acetylcholinesterase (AChE, EC 3.1.1.7) by binding to its active site while preventing neurotransmission in the cholinergic synapses. The protection and treatment of this kind of poisoning are still a challenge as we are yet to discover an antidote that would be effective in all cases of poisoning. To aid the search for more efficient antidotes, we evaluated the ability of nine pyridoxal oxime derivatives, prepared by a novel synthetic pathway, to reactivate recombinant human AChE and the related purified human plasma butyrylcholinesterase (BChE, EC 3.1.1.8) inhibited by VX, tabun and paraoxon. Oximes are derivatives of vitamin B6 bearing a phenacyl moiety attached to the quaternary nitrogen atom and having various substituents on the phenyl ring. As the results have shown, the tested oximes were in general more efficient in the reactivation of OP-inhibited BChE than AChE. The highest observed rate was in the case of VX-inhibited BChE reactivation, where kobs was 0.0087min-1 and the reactivation maximum of 90% was achieved within 5h. The cholinesterases displayed a binding affinity for these derivatives in a µmolar range no matter the substituent on their rings which was in accordance with the molecular modelling results showing a similar binding pattern for all oximes within the active site of both AChE and BChE. Such a positioning reveals also that hydroxy and a metoxy substituents at the vicinity of the oxime moiety present a possible steric hindrance explaining the reactivation results.


Subject(s)
Antidotes/pharmacology , Cholinesterase Inhibitors/pharmacology , Cholinesterase Reactivators/pharmacology , Organophosphorus Compounds/pharmacology , Pyridoxal/analogs & derivatives , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Antidotes/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Chemical Warfare Agents/pharmacology , Humans , Models, Molecular , Pyridoxal/metabolism , Pyridoxal/pharmacology , Recombinant Proteins , Structure-Activity Relationship
6.
Molecules ; 19(6): 7610-20, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24914903

ABSTRACT

Quaternary salts of pyridoxal oxime have been synthesized by the quaternization of pyridoxal oxime with substituted phenacyl bromides using microwave heating. Microwave-assisted rapid synthesis was done both in solvent (acetone) and under solvent-free conditions. Good to excellent yields (58%-94%) were obtained in acetone in very short reaction times (3-5 min) as well as in the solvent-free procedure (42%-78%) in very short reaction times (7-10 min) too. Effective metodologies for the preparation of pyridoxal oxime quaternary salts, having the advantagies of being eco-friendly, easy to handle, and performed in shorter reactions time are presented. The structure of compound 7, in which a 4-fluorophenacyl moiety is bonded to the pyridinium ring nitrogen atom, was unequivocally confirmed by the single-crystal X-ray diffraction method.


Subject(s)
Acetophenones/chemistry , Microwaves , Pyridoxal/analogs & derivatives , Molecular Structure , Pyridoxal/chemistry
7.
Chem Biol Interact ; 187(1-3): 234-7, 2010 Sep 06.
Article in English | MEDLINE | ID: mdl-20144593

ABSTRACT

A series of novel pyridinium oximes was prepared by reactions of quaternization of pyridoxal oxime with substituted phenacyl bromides in acetone at room temperature. The structures of compounds were determined according to the data obtained by IR spectroscopy, mass spectrometry, (1)H and (13)C nuclear magnetic resonance spectroscopy as well as by elemental analysis. We tested pyridoxal oxime (1) and five prepared oximes in 1mM concentration as reactivators of human erythrocytes acetylcholinesterase (AChE) inhibited by organophosphorus compounds tabun and paraoxon: 1-phenacyl-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide (2), 1-(4'-chlorophenacyl)-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide (3), 1-(4'-fluorophenacyl)-3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methylpyridinium bromide (4), 3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4'-methylphenacyl)pyridinium bromide (5), 3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-2-methyl-1-(4'-methoxyphenacyl)pyridinium bromide (6). However, tested oximes were not efficient in reactivation of either tabun or paraoxon inhibited AChE. The maximum restored enzyme activity in 24h was below 25%. Therefore, this class of compounds cannot be considered as potential improvement in a search for new and more efficient antidotes against OP poisoning.


Subject(s)
Acetylcholinesterase/metabolism , Enzyme Activation/drug effects , Organophosphates/pharmacology , Paraoxon/pharmacology , Vitamin B 6/chemical synthesis , Vitamin B 6/pharmacology , Cholinesterase Inhibitors/pharmacology , Cholinesterase Reactivators/chemical synthesis , Cholinesterase Reactivators/chemistry , Cholinesterase Reactivators/pharmacology , Humans , Oximes/chemical synthesis , Oximes/chemistry , Oximes/pharmacology , Vitamin B 6/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...