Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069261

ABSTRACT

The use of a combination of nanoparticles as antimicrobial agents can be one strategy to overcome the tendency of microbes to become resistant to antibiotic action. Also, the optimization of nano-photocatalysts to efficiently remove persistent pollutants from wastewater is a hot topic. In this study, two composites ZnO/Au (1% wt.) and ZnO/Ag (1% wt.) were synthesized by simple aqueous solution methods. The structure and morphology of the r nanocomposites were analyzed by structural and optical characterization methods. The formation of AuNPs and AgNPs in these experiments was also discussed. The antimicrobial properties of ZnO, ZnO/Au, and ZnO/Ag nanomaterials were investigated against Gram-negative bacteria (Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus). The results showed an increase of 80% in the antimicrobial activity of ZnO/Au against Pseudomonas aeruginosa compared with 30% in the case of ZnO/Ag. Similarly, in the case of the S. aureus strain tests, ZnO/Au increased the antimicrobial activity by 55% and ZnO/Ag by 33%. The photocatalytic tests indicated an improvement in the photocatalytic degradation of methylene blue (MB) under UV irradiation using ZnO/Au and ZnO/Ag nanocomposites compared to bare ZnO. The photocatalytic degradation efficiency of ZnO after 60 min of UV irradiation was ∼83%, while the addition of AuNPs enhanced the degradation rate to ∼95% (ZP2), and AgNP presence enhanced the efficiency to ∼98%. The introduction of noble metallic nanoparticles into the ZnO matrix proved to be an effective strategy to increase their antimicrobial activity against P. aeruginosa and S. aureus, and their photocatalytic activity was evaluated through the degradation of MB dye. Comparing the enhancing effects of Au and Ag, it was found that ZnO/Au was a better antimicrobial agent while ZnO/Ag was a more effective photocatalyst under UV irradiation.


Subject(s)
Metal Nanoparticles , Nanocomposites , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Staphylococcus aureus , Gold/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanocomposites/chemistry , Methylene Blue/chemistry
2.
Materials (Basel) ; 16(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37110102

ABSTRACT

In this paper, the authors describe the fabrication of nanocomposite chitosan-based systems of zinc oxide (ZnO), silver (Ag) and Ag-ZnO. Recently, the development of coated screen-printed electrodes using metal and metal oxide nanoparticles (NPs) for the specific detection and monitoring of different cancer tumors has been obtaining important results. Ag, ZnO NPs and Ag-ZnO prepared by the hydrolysis of zinc acetate blended with a chitosan (CS) matrix were used for the surface modification of screen-printed carbon electrodes (SPCEs) in order to analyze the electrochemical behavior of the typical redox system of a 10 mM potassium ferrocyanide-0.1 M buffer solution (BS). The solutions of CS, ZnO/CS, Ag/CS and Ag-ZnO/CS were prepared in order to modify the carbon electrode surface, and were measured at different scan rates from 0.02 V/s to 0.7 V/s by cyclic voltammetry. The cyclic voltammetry (CV) was performed on a house-built potentiostat (HBP). The cyclic voltammetry of the measured electrodes showed the influence of varying the scan rate. The variation of the scan rate has an influence on the intensity of the anodic and cathodic peak. Both values of currents (anodic and cathodic currents) have higher values for 0.1 V/s (Ia = 22 µA and Ic = -25 µA) compared to the values for 0.06 V/s (Ia = 10 µA and Ic = -14 µA). The CS, ZnO/CS, Ag/CS and Ag-ZnO/CS solutions were characterized using a field emission scanning electron microscopy (FE-SEM) with EDX elemental analysis. The modified coated surfaces of screen-printed electrodes were analyzed using optical microscopy (OM). The present coated carbon electrodes showed a different waveform compared to the voltage applied to the working electrode, depending on the scan rate and chemical composition of the modified electrodes.

3.
Nanomaterials (Basel) ; 12(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36364608

ABSTRACT

Annually, antimicrobial-resistant infections-related mortality worldwide accelerates due to the increased use of antibiotics during the coronavirus pandemic and the antimicrobial resistance, which grows exponentially, and disproportionately to the current rate of development of new antibiotics. Nanoparticles can be an alternative to the current therapeutic approach against multi-drug resistance microorganisms caused infections. The motivation behind this work was to find a superior antibacterial nanomaterial, which can be efficient, biocompatible, and stable in time. This study evaluated the antibacterial activity of ZnO-based nanomaterials with different morphologies, synthesized through the solvothermal method and further modified with Au nanoparticles through wet chemical reduction. The structure, crystallinity, and morphology of ZnO and ZnO/Au nanomaterials have been investigated with XRD, SEM, TEM, DLS, and FTIR spectroscopy. The antibacterial effect of unmodified ZnO and ZnO/Au nanomaterials against Escherichia coli and Staphylococcus aureus was investigated through disc diffusion and tetrazolium/formazan (TTC) assays. The results showed that the proposed nanomaterials exhibited significant antibacterial effects on the Gram-positive and Gram-negative bacteria. Furthermore, ZnO nanorods with diameters smaller than 50 nm showed better antibacterial activity than ZnO nanorods with larger dimensions. The antibacterial efficiency against Escherichia coli and Staphylococcus aureus improved considerably by adding 0.2% (w/w) Au to ZnO nanorods. The results indicated the new materials' potential for antibacterial applications.

4.
Biomolecules ; 11(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34439803

ABSTRACT

Developing multifunctional systems for the biomimetic remineralization of human enamel is a challenging task, since hydroxyapatite (HAP) rod structures of tooth enamel are difficult to replicate artificially. The paper presents the first report on the simultaneous use of chitosan (CS) and agarose (A) in a biopolymer-based hydrogel for the biomimetic remineralization of an acid-etched native enamel surface during 4-10-day immersion in artificial saliva with or without (control group) fluoride. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, Fourier transform infrared and Raman spectroscopies, X-ray diffraction, and microhardness tests were applied to investigate the properties of the acid-etched and remineralized dental enamel layers under A and CS-A hydrogels. The results show that all biomimetic epitaxial reconstructed layers consist mostly of a similar hierarchical HAP structure to the native enamel from nano- to microscale. An analogous Ca/P ratio (1.64) to natural tooth enamel and microhardness recovery of 77.4% of the enamel-like layer are obtained by a 7-day remineralization process in artificial saliva under CS-A hydrogels. The CS component reduced carbonation and moderated the formation of HAP nanorods in addition to providing an extracellular matrix to support growing enamel-like structures. Such activity lacked in samples exposed to A-hydrogel only. These data suggest the potential of the CS-A hydrogel in guiding the formation of hard tissues as dental enamel.


Subject(s)
Biomimetic Materials/pharmacology , Chitosan/pharmacology , Dental Enamel/drug effects , Durapatite/chemistry , Sepharose/pharmacology , Tooth Remineralization/methods , Acid Etching, Dental/methods , Biomimetic Materials/chemistry , Buffers , Chitosan/chemistry , Dental Enamel/physiology , Dental Enamel/ultrastructure , Durapatite/metabolism , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Materials Testing/methods , Molar/surgery , Saliva/chemistry , Sepharose/chemistry , Tooth Extraction
5.
J Biomed Nanotechnol ; 16(2): 137-152, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32252876

ABSTRACT

Surface modification of zinc oxide nanoparticles (ZnO NPs) is a strategy to tune their biocompatibility. Herein we report on the synthesis of a series of fluorescent ZnO NPs modified with 2-10% (3-glycidyloxypropyl)trimethoxysilane (GPTMS) to investigate the fluorescence properties and to explore their applications in microbiology and biomedicine. The obtained ZnO NPs were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). Size reduction occurred from ca. 13 nm in unmodified ZnO to 3-4 nm in silane-modified samples and fluorescence spectra showed size-dependent variation of the photoemission bands' intensity. The antibacterial and cytotoxic activities were investigated on Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, and in ovarian (A2780) and prostate (PC3) cancer cells by tetrazolium/formazan-based methods. The antibacterial effect was higher for E. coli than S. aureus, while the cytotoxic activity was similar for both cancer cells and varied with the particle size. Cell death by apoptosis, and/or necrosis versus autophagy, were explored by flow cytometry using an Annexin V based-method and transmission electron microscopy (TEM). The main mechanism of ZnO NPs toxicity may involve the generation of reactive oxygen species (ROS) and the induction of apoptosis or autophagy. This work revealed the potential utility of GPTMS-modified ZnO NPs in the treatment of bacterial infection and cancer.


Subject(s)
Metal Nanoparticles , Ovarian Neoplasms , Anti-Bacterial Agents , Cell Line, Tumor , Escherichia coli , Female , Humans , Microbial Sensitivity Tests , Organosilicon Compounds , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , X-Ray Diffraction , Zinc Oxide
SELECTION OF CITATIONS
SEARCH DETAIL
...