Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
iScience ; 26(9): 107615, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37664585

ABSTRACT

The molecular mechanism by which lipid/lipoprotein biosynthesis is regulated in mammals involves a very large number of genes that are subject to multiple levels of regulation. miRNAs are recognized contributors to lipid homeostasis at the post-transcriptional level, although the elucidation of their role is made difficult by the multiplicity of their targets and the ability of more miRNAs to affect the same mRNAs. In this study, an evaluation of how miRNA expression varies in organs playing a key role in lipid/lipoprotein metabolism was conducted in control mice and in two mouse models carrying genetic ablations which differently affect low-density lipoprotein metabolism. Mice were fed a lipid-poor standard diet and a diet enriched in cholesterol and saturated fat. The results obtained showed that there are no miRNAs whose expression constantly vary with dietary or genetic changes. Furthermore, it appears that diet, more than genotype, impacts on organ-specific miRNA expression profiles.

2.
Dis Model Mech ; 16(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36810932

ABSTRACT

Gonadotropin-releasing hormone (GnRH) deficiency (GD) is a disorder characterized by absent or delayed puberty, with largely unknown genetic causes. The purpose of this study was to obtain and exploit gene expression profiles of GnRH neurons during development to unveil novel biological mechanisms and genetic determinants underlying GD. Here, we combined bioinformatic analyses of immortalized and primary embryonic GnRH neuron transcriptomes with exome sequencing from GD patients to identify candidate genes implicated in the pathogenesis of GD. Among differentially expressed and filtered transcripts, we found loss-of-function (LoF) variants of the autism-linked neuroligin 3 (NLGN3) gene in two unrelated patients co-presenting with GD and neurodevelopmental traits. We demonstrated that NLGN3 is upregulated in maturing GnRH neurons and that NLGN3 wild-type, but not mutant, protein promotes neuritogenesis when overexpressed in developing GnRH cells. Our data represent proof of principle that this complementary approach can identify new candidate GD genes and demonstrate that LoF NLGN3 variants can contribute to GD. This novel genotype-phenotype correlation implies common genetic mechanisms underlying neurodevelopmental disorders, such as GD and autistic spectrum disorder.


Subject(s)
Autistic Disorder , Humans , Autistic Disorder/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Gonadotropin-Releasing Hormone/metabolism
3.
Anat Cell Biol ; 56(2): 228-235, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36721253

ABSTRACT

Toll-like receptors (TLRs) are the mammalian ortholog of Drosophila melanogaster protein Toll, originally identified for its involvement in embryonic development. In mammals, TLRs are mainly known for their ability to recognize pathogen- or damage-associated molecular patterns and, consequently, to initiate the immune response. However, it is becoming clear that TLRs can play a role also in mammal embryo development. We have previously described TLR4 and TLR7 expression in developing mouse peripheral nervous system and gastrointestinal tract. In the present study, we extended the investigation of TLR4 and TLR7 to the respiratory system and to the two main accessory organs of the digestive system, the liver and pancreas. TLR4 and TLR7 immunostaining was performed on mouse conceptuses collected at different stages, from E12 to E18. TLR4 and TLR7 immunoreactivity was evident in the embryo pancreas and liver at E12, while, in the respiratory apparatus, appeared at E14 and E17, respectively. Although further studies are required to elucidate the specific role of these TLRs in embryo development, the differential spatiotemporal TLR4 and TLR7 appearance may suggest that TLR expression in developing embryos is highly regulated for a possible their direct involvement in the formation of the organs and in the acquisition of immune-related features in preparation for the birth.

4.
Mol Nutr Food Res ; 67(2): e2200367, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36419336

ABSTRACT

SCOPE: Specific lipid molecules circulating in plasma at low concentrations have emerged as biomarkers of atherosclerotic risk. The aim of the present study is that of evaluating, in an athero-prone mouse model, how different diets can affect plasma and aorta lipidome. METHODS AND RESULTS: Thirty-six apoE knockout mice are divided in three groups and feed 12 weeks with diets differing for cholesterol and fatty acid content. Atherosclerosis is measured at the aortic sinus and aorta. Lipids are quantified in plasma and aorta with mass spectrometry. The cholesterol content of the diets is the main driver of lipid accumulation in plasma and aorta. The fatty acid composition of the diets affects plasma levels both of essential (linoleic acid) and nonessential (myristic and arachidonic acid) ones. Lipidomics show a comparable distribution, in plasma and aorta, of the main lipid components of oxidized LDL, including cholesteryl esters and lysophosphatidylcholines. Interestingly, lactosylceramide, glucosyl/galactosylceramide, and individual ceramide species are found to accumulate in diseased aortic segments. CONCLUSION: Both the cholesterol and fatty acid content of the diets profoundly affect plasma lipidome. Aorta lipidome is likewise affected with the accumulation of specific lipids known as markers of atherosclerosis.


Subject(s)
Aorta , Atherosclerosis , Cholesterol, Dietary , Diet , Fatty Acids , Lipidomics , Animals , Mice , Aorta/metabolism , Apolipoproteins E/genetics , Atherosclerosis/blood , Atherosclerosis/metabolism , Fatty Acids/blood , Fatty Acids/metabolism , Mice, Knockout , Cholesterol, Dietary/blood , Cholesterol, Dietary/metabolism , Biomarkers/blood , Biomarkers/metabolism
5.
Arterioscler Thromb Vasc Biol ; 42(7): 839-856, 2022 07.
Article in English | MEDLINE | ID: mdl-35587694

ABSTRACT

BACKGROUND: HDL (high-density lipoprotein) and its major protein component, apoA-I (apolipoprotein A-I), play a unique role in cholesterol homeostasis and immunity. ApoA-I deficiency in hyperlipidemic, atheroprone mice was shown to drive cholesterol accumulation and inflammatory cell activation/proliferation. The present study was aimed at investigating the impact of apoA-I deficiency on lipid deposition and local/systemic inflammation in normolipidemic conditions. METHODS: ApoE deficient mice, apoE/apoA-I double deficient (DKO) mice, DKO mice overexpressing human apoA-I, and C57Bl/6J control mice were fed normal laboratory diet until 30 weeks of age. Plasma lipids were quantified, atherosclerosis development at the aortic sinus and coronary arteries was measured, skin ultrastructure was evaluated by electron microscopy. Blood and lymphoid organs were characterized through histological, immunocytofluorimetric, and whole transcriptome analyses. RESULTS: DKO were characterized by almost complete HDL deficiency and by plasma total cholesterol levels comparable to control mice. Only DKO showed xanthoma formation and severe inflammation in the skin-draining lymph nodes, whose transcriptome analysis revealed a dramatic impairment in energy metabolism and fatty acid oxidation pathways. An increased presence of CD4+ T effector memory cells was detected in blood, spleen, and skin-draining lymph nodes of DKO. A worsening of atherosclerosis at the aortic sinus and coronary arteries was also observed in DKO versus apoE deficient. Human apoA-I overexpression in the DKO background was able to rescue the skin phenotype and halt atherosclerosis development. CONCLUSIONS: HDL deficiency, in the absence of hyperlipidemia, is associated with severe alterations of skin morphology, aortic and coronary atherosclerosis, local and systemic inflammation.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Hyperlipidemias , Xanthomatosis , Animals , Apolipoprotein A-I , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Hyperlipidemias/complications , Hyperlipidemias/genetics , Inflammation/complications , Inflammation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
Sci Rep ; 11(1): 23458, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873191

ABSTRACT

Functional enrichment analysis is an analytical method to extract biological insights from gene expression data, popularized by the ever-growing application of high-throughput techniques. Typically, expression profiles are generated for hundreds to thousands of genes/proteins from samples belonging to two experimental groups, and after ad-hoc statistical tests, researchers are left with lists of statistically significant entities, possibly lacking any unifying biological theme. Functional enrichment tackles the problem of putting overall gene expression changes into a broader biological context, based on pre-existing knowledge bases of reference: database collections of known expression regulation, relationships and molecular interactions. STRING is among the most popular tools, providing both protein-protein interaction networks and functional enrichment analysis for any given set of identifiers. For complex experimental designs, manually retrieving, interpreting, analyzing and abridging functional enrichment results is a daunting task, usually performed by hand by the average wet-biology researcher. We have developed reString, a cross-platform software that seamlessly retrieves from STRING functional enrichments from multiple user-supplied gene sets, with just a few clicks, without any need for specific bioinformatics skills. Further, it aggregates all findings into human-readable table summaries, with built-in features to easily produce user-customizable publication-grade clustermaps and bubble plots. Herein, we outline a complete reString protocol, showcasing its features on a real use-case.


Subject(s)
Cluster Analysis , Computational Biology/methods , Data Mining/methods , Gene Expression Regulation , Pattern Recognition, Automated , Animals , Aorta/metabolism , Databases, Genetic , Gene Expression Profiling/methods , Humans , Internet , Mice , Polymerase Chain Reaction , Programming Languages , Protein Interaction Maps , Proteins , RNA-Seq , Signal Transduction , Software , User-Computer Interface
8.
Arterioscler Thromb Vasc Biol ; 41(2): 651-667, 2021 02.
Article in English | MEDLINE | ID: mdl-33327742

ABSTRACT

OBJECTIVE: HDL (high-density lipoprotein) particles are known to possess several antiatherogenic properties that include the removal of excess cholesterol from peripheral tissues, the maintenance of endothelial integrity, antioxidant, and anti-inflammatory activities. ApoA-I overexpression in apoE-deficient (EKO) mice has been shown to increase HDL levels and to strongly reduce atherosclerosis development. The aim of the study was to investigate gene expression patterns associated with atherosclerosis development in the aorta of EKO mice and how HDL plasma levels relate to gene expression patterns at different stages of atherosclerosis development and with different dietary treatments. Approach and Results: Eight-week-old EKO mice, EKO mice overexpressing human apoA-I, and wild-type mice as controls were fed either normal laboratory or Western diet for 6 or 22 weeks. Cholesterol distribution among lipoproteins was evaluated, and atherosclerosis of the aorta was quantified. High-throughput sequencing technologies were used to analyze the transcriptome of the aorta of the 3 genotypes in each experimental condition. In addition to the well-known activation of inflammation and immune response, the impairment of sphingolipid metabolism, phagosome-lysosome system, and osteoclast differentiation emerged as relevant players in atherosclerosis development. The reduced atherosclerotic burden in the aorta of EKO mice expressing high levels of apoA-I was accompanied by a reduced activation of immune system markers, as well as reduced perturbation of lysosomal activity and a better regulation of the sphingolipid synthesis pathway. CONCLUSIONS: ApoA-I modulates atherosclerosis development in the aorta of EKO mice affecting the expression of pathways additional to those associated with inflammation and immune response.


Subject(s)
Aorta/metabolism , Aortic Diseases/genetics , Apolipoprotein A-I/metabolism , Atherosclerosis/genetics , Inflammation/genetics , Lysosomes/genetics , Sphingolipids/metabolism , Transcriptome , Animals , Aorta/pathology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Cholesterol/blood , Diet, High-Fat , Disease Models, Animal , Gene Expression Profiling , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Inflammation/metabolism , Inflammation/pathology , Lysosomes/metabolism , Lysosomes/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Protein Interaction Maps , Signal Transduction , Sphingolipids/blood , Time Factors , Triglycerides/blood
9.
Sci Rep ; 10(1): 13368, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770020

ABSTRACT

Lipidomic analyses address the problem of characterizing the lipid components of given cells, tissues and organisms by means of chromatographic separations coupled to high-resolution, tandem mass spectrometry analyses. A number of software tools have been developed to help in the daunting task of mass spectrometry signal processing and cleaning, peak analysis and compound identification, and a typical finished lipidomic dataset contains hundreds to thousands of individual molecular lipid species. To provide researchers without a specific technical expertise in mass spectrometry the possibility of broadening the exploration of lipidomic datasets, we have developed liputils, a Python module that specializes in the extraction of fatty acid moieties from individual molecular lipids. There is no prerequisite data format, as liputils extracts residues from RefMet-compliant textual identifiers and from annotations of other commercially available services. We provide three examples of real-world data processing with liputils, as well as a detailed protocol on how to readily process an existing dataset that can be followed with basic informatics skills.

10.
Mol Nutr Food Res ; 64(15): e1900835, 2020 08.
Article in English | MEDLINE | ID: mdl-32579743

ABSTRACT

SCOPE: Protein malnutrition is characterized by stunted growth, hepatic steatosis and a damaged gut mucosal architecture. Since high-fat shaped gut microbiota (HFM) has an increased ability in providing nutrients and energy from food to the host, the aim of this study is to determine whether such a microbiota could beneficially impact on the consequences of malnutrition. METHODS AND RESULTS: The cecal content of specific pathogen free C57Bl/6J mice fed a high-fat diet or a low-protein diet is transplanted in two groups of germ-free C57Bl/6J recipient mice, which are subsequently fed a low-protein diet for 8 weeks. Body weight gain is comparable between the two groups of microbiota-recipient mice. The HFM led to a worsening of microvesicular steatosis and a decrease of plasma lipids compared to the low-protein shaped microbiota. In the small intestine of mice receiving the HFM, although significant histological differences are not observed, the expression of antimicrobial genes promoting oxidative stress and immune response at the ileal epithelium (Duox2, Duoxa2, Saa1, Ang4, Defa5) is increased. CONCLUSION: The transplant of HFM in mice fed a low-protein diet represents a noxious stimulus for the ileal mucosa and impairs hepatic lipoprotein secretion, favoring the occurrence of hepatic microvesicular steatosis.


Subject(s)
Diet, High-Fat , Diet, Protein-Restricted/adverse effects , Gastrointestinal Microbiome/physiology , Non-alcoholic Fatty Liver Disease/microbiology , Animals , Cecum/microbiology , Cholesterol/blood , Dysbiosis/genetics , Dysbiosis/microbiology , Eating , Feces/microbiology , Gene Expression , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Organ Size , Triglycerides/blood , Weight Gain
11.
Ann Anat ; 231: 151526, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32380196

ABSTRACT

BACKGROUND: Toll-Like Receptors (TLRs) play a critical role in the innate and adaptive immune system. They are the mammalian orthologs of Drosophila melanogaster protein Toll, which has been proved to have an early morphogenetic role in invertebrate embryogenesis that in the adult switches to an immune function. AIM: The aim of this study was to evaluate the expression of TLR4 and TLR7 during dorsal root ganglia (DRG), paravertebral ganglia (PVG), and enteric nervous system (ENS) murine development. METHODS: Mouse embryos from different stages (i.e. E12 to E18) were processed for immunolocalization analysis on formalin-fixed paraffin-embedded sections, and isolated intestine were processed for whole-mount preparations. RESULTS: We observed a differentially regulated expression of TLR4 and TLR7 during embryogenesis and an overall increased expression of both receptors during development. While TLR4 was detectable in neurons of DRG and PVG starting from E14 and only from E18 in the ENS, TLR7 was already expressed in scattered neurons of all the investigated regions at E12. CONCLUSIONS: TLR4 and TRL7 expression temporal patterns suggest a morphogenetic role for these receptors in the development of neural crest derivatives in mammals.


Subject(s)
Peripheral Nervous System/embryology , Peripheral Nervous System/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 7/metabolism , Adrenal Glands/embryology , Adrenal Glands/growth & development , Adrenal Glands/metabolism , Animals , Female , Fluorescent Antibody Technique , Immunohistochemistry , Male , Mice , Peripheral Nervous System/growth & development
12.
Cardiovasc Res ; 116(8): 1458-1472, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31688894

ABSTRACT

AIMS: Increased Ankyrin Repeat Domain 1 (ANKRD1) levels linked to gain of function mutations have been associated to total anomalous pulmonary venous return and adult cardiomyopathy occurrence in humans. The link between increased ANKRD1 level and cardiac structural and functional disease is not understood. To get insight into this problem, we have generated a gain of function ANKRD1 mouse model by overexpressing ANKRD1 in the myocardium. METHODS AND RESULTS: Ankrd1 is expressed non-homogeneously in the embryonic myocardium, with a dynamic nucleo-sarcomeric localization in developing cardiomyocytes. ANKRD1 transgenic mice present sinus venosus defect, which originates during development by impaired remodelling of early embryonic heart. Adult transgenic hearts develop diastolic dysfunction with preserved ejection fraction, which progressively evolves into heart failure, as shown histologically and haemodynamically. Transgenic cardiomyocyte structure, sarcomeric assembly, and stability are progressively impaired from embryonic to adult life. Postnatal transgenic myofibrils also present characteristic functional alterations: impaired compliance at neonatal stage and impaired lusitropism in adult hearts. Altogether, our combined analyses suggest that impaired embryonic remodelling and adult heart dysfunction in ANKRD1 transgenic mice present a common ground of initial cardiomyocyte defects, which are exacerbated postnatally. Molecular analysis showed transient activation of GATA4-Nkx2.5 transcription in early transgenic embryos and subsequent dynamic transcriptional modulation within titin gene. CONCLUSIONS: ANKRD1 is a fine mediator of cardiomyocyte response to haemodynamic load in the developing and adult heart. Increased ANKRD1 levels are sufficient to initiate an altered cellular phenotype, which is progressively exacerbated into a pathological organ response by the high ventricular workload during postnatal life. Our study defines for the first time a unifying picture for ANKRD1 role in heart development and disease and provides the first mechanistic link between ANKRD1 overexpression and cardiac disease onset.


Subject(s)
Heart Septal Defects, Atrial/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Function, Left , Animals , Diastole , Female , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Heart Septal Defects, Atrial/genetics , Heart Septal Defects, Atrial/pathology , Heart Septal Defects, Atrial/physiopathology , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Male , Mice, Transgenic , Muscle Proteins/genetics , Myocardium/pathology , Nuclear Proteins/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Repressor Proteins/genetics , Up-Regulation , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
13.
Br J Pharmacol ; 177(2): 328-345, 2020 01.
Article in English | MEDLINE | ID: mdl-31621898

ABSTRACT

BACKGROUND AND PURPOSE: Fenretinide, a synthetic retinoid derivative first investigated for cancer prevention and treatment, has been shown to ameliorate glucose tolerance, improve plasma lipid profile and reduce body fat mass. These effects, together with its ability to inhibit ceramide synthesis, suggest that fenretinide may have an anti-atherosclerotic action. EXPERIMENTAL APPROACH: To this aim, nine-week-old apoE-knockout (EKO) female mice were fed for twelve weeks a Western diet, without (control) or with (0.1% w/w) fenretinide. As a reference, wild-type (WT) mice were treated similarly. Growth and metabolic parameters were monitored throughout the study. Atherosclerosis development was evaluated in the aorta and at the aortic sinus. Blood and lymphoid organs were further characterized with thorough cytological/histological and immunocytofluorimetric analyses. KEY RESULTS: Fenretinide treatment significantly lowered body weight, glucose levels and plasma levels of total cholesterol, triglycerides, and phospholipids. In the liver, fenretinide remarkably reduced hepatic glycogenosis and steatosis driven by the Western diet. Treated spleens were abnormally enlarged, with severe follicular atrophy and massive extramedullary haematopoiesis. Severe renal hemosiderin deposition was observed in treated EKO mice. Treatment resulted in a threefold increase of total leukocytes (WT and EKO) and raised the activated/resting monocyte ratio in EKO mice. Finally, atherosclerosis development was markedly increased at the aortic arch, thoracic and abdominal aorta of fenretinide-treated mice. CONCLUSIONS AND IMPLICATIONS: We provide the first evidence that, despite beneficial metabolic effects, fenretinide treatment may enhance the development of atherosclerosis.


Subject(s)
Antineoplastic Agents/toxicity , Aorta/drug effects , Aortic Diseases/chemically induced , Atherosclerosis/chemically induced , Energy Metabolism/drug effects , Fenretinide/toxicity , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Glucose/drug effects , Blood Glucose/metabolism , Diet, Western , Disease Models, Animal , Disease Progression , Female , Lipids/blood , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Spleen/drug effects , Spleen/metabolism , Spleen/pathology , Weight Loss/drug effects
14.
Can J Cardiol ; 35(10): 1400-1408, 2019 10.
Article in English | MEDLINE | ID: mdl-31495683

ABSTRACT

BACKGROUND: Among strategies to reduce the remaining risk of cardiovascular disease, interest has focused on using infusions of synthetic high-density lipoprotein (sHDL). METHODS: New Zealand rabbits underwent a perivascular injury at both carotids and were randomly allocated into 2 protocols: (1) a single-dose study, where rabbits were treated with a single infusion of sHDL containing a trimeric form of human apoA-I (TN-sHDL, 200 mg/kg) or with Placebo; (2) a multiple-dose study, where 4 groups of rabbits were treated 5 times with Placebo or TN-sHDL at different doses (8, 40, 100 mg/kg). Plaque changes were analysed in vivo by intravascular ultrasound. Blood was drawn from rabbits for biochemical analyses and cholesterol efflux capacity evaluation. RESULTS: In both protocols, atheroma volume in the Placebo groups increased between the first and the second intravascular ultrasound evaluation. A stabilization or a slight regression was instead observed vs baseline in the TN-sHDL-treated groups (P < 0.005 vs Placebo after infusion). TN-sHDL treatment caused a sharp rise of plasma-free cholesterol levels and a significant increase of total cholesterol efflux capacity. Histologic analysis of carotid plaques showed a reduced macrophage accumulation in TN-sHDL-treated rabbits compared with Placebo (P < 0.05). CONCLUSIONS: Our results demonstrate that acute and subacute treatments with TN-sHDL are effective in stabilizing atherosclerotic plaques in a rabbit model. This effect appears to be related to a reduced intraplaque accumulation of inflammatory cells. Besides recent failures in proving its efficacy, sHDL treatment remains a fascinating therapeutic option for the reduction of cardiovascular risk.


Subject(s)
Apolipoprotein A-I/administration & dosage , Lipoproteins, HDL/administration & dosage , Plaque, Atherosclerotic/prevention & control , Animals , Hypercholesterolemia/complications , Infusions, Intravenous , Male , Pharmaceutical Preparations , Plaque, Atherosclerotic/etiology , Rabbits , Random Allocation
15.
Int J Mol Sci ; 20(18)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31489930

ABSTRACT

Peroxisome proliferator activated receptor α (PPARα) has the most relevant biological functions among PPARs. Activation by drugs and dietary components lead to major metabolic changes, from reduced triglyceridemia to improvement in the metabolic syndrome. Polymorphisms of PPARα are of interest in order to improve our understanding of metabolic disorders associated with a raised or reduced risk of diseases. PPARα polymorphisms are mainly characterized by two sequence changes, L162V and V227A, with the latter occurring only in Eastern nations, and by numerous SNPs (Single nucleotide polymorphisms) with a less clear biological role. The minor allele of L162V associates with raised total cholesterol, LDL-C (low-density lipoprotein cholesterol), and triglycerides, reduced HDL-C (high-density lipoprotein metabolism), and elevated lipoprotein (a). An increased cardiovascular risk is not clear, whereas a raised risk of diabetes or of liver steatosis are not well supported. The minor allele of the V227A polymorphism is instead linked to a reduction of steatosis and raised γ-glutamyltranspeptidase levels in non-drinking Orientals, the latter being reduced in drinkers. Lastly, the minor allele of rs4353747 is associated with a raised high-altitude appetite loss. These and other associations indicate the predictive potential of PPARα polymorphisms for an improved understanding of human disease, which also explain variability in the clinical response to specific drug treatments or dietary approaches.


Subject(s)
Atherosclerosis/genetics , Genetic Predisposition to Disease , Metabolic Diseases/genetics , PPAR alpha/genetics , Polymorphism, Single Nucleotide , Alleles , Amino Acid Substitution , Animals , Atherosclerosis/metabolism , Diet , Gene Expression Regulation , Genetic Association Studies , Genotype , Humans , Lipoproteins/blood , Lipoproteins/metabolism , Metabolic Diseases/metabolism
16.
Pharmacol Res ; 141: 189-200, 2019 03.
Article in English | MEDLINE | ID: mdl-30593851

ABSTRACT

Topiramate is an anticonvulsant drug also prescribed for migraine prophylaxis that acts through several mechanisms of action. Several studies indicate that topiramate induces weight loss and a moderate reduction of plasma lipids and glucose. Based on these favourable metabolic effects, aim of this study was to evaluate if topiramate could modulate atherosclerosis development and protect target organs of dysmetabolic conditions. Thirty apoE-deficient mice were divided into three groups and fed for 12 weeks a high fat diet (Control) or the same diet containing topiramate at 0.125% and 0.250%. Body weight, water and food intake were monitored throughout the study. Plasma lipids and glucose levels were measured and a glucose tolerance test was performed. Atherosclerosis development was evaluated in the whole aorta and at the aortic sinus. Histological analysis of liver, kidney and adipose tissue was performed. Topiramate did not affect weight gain and food intake. Glucose tolerance and plasma lipids were not changed and, in turn, atherosclerosis development was not different among groups. Topiramate did not modify liver and adipose tissue histology. Conversely, in the kidneys, the treatment reduced the occurrence of glomerular lipidosis by decreasing foam cells accumulation and reducing the expression of inflammatory markers. Blood urea nitrogen levels were also reduced by treatment. Our results indicate that topiramate does not affect atherosclerosis development, but preserves kidney structure and function. The study suggests that topiramate could be investigated in drug repurposing studies for the treatment of glomerular lipidosis.


Subject(s)
Kidney/drug effects , Lipidoses/prevention & control , Protective Agents/pharmacology , Topiramate/pharmacology , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Glucose/analysis , Diet, High-Fat , Female , Kidney/metabolism , Kidney/pathology , Lipidoses/metabolism , Lipidoses/pathology , Lipids/blood , Mice, Knockout, ApoE
17.
Nutrients ; 12(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892152

ABSTRACT

It is widely recognized that the microorganisms inhabiting our gastrointestinal tract-the gut microbiota-deeply affect the pathophysiology of the host. Gut microbiota composition is mostly modulated by diet, and gut microorganisms communicate with the different organs and tissues of the human host by synthesizing hormones and regulating their release. Herein, we will provide an updated review on the most important classes of gut microbiota-derived hormones and their sensing by host receptors, critically discussing their impact on host physiology. Additionally, the debated interplay between microbial hormones and the development of cardiovascular disease will be thoroughly analysed and discussed.


Subject(s)
Cardiovascular Diseases/physiopathology , Endocrine Glands , Gastrointestinal Microbiome/physiology , Hormones/biosynthesis , Animals , Atherosclerosis/physiopathology , Bile Acids and Salts/metabolism , Choline/metabolism , Diet , Fatty Acids, Volatile/metabolism , Humans , Neurotransmitter Agents/physiology , Risk Factors
18.
Nutrients ; 10(9)2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30200592

ABSTRACT

Risk assessment tools, i.e., validated risk prediction algorithms, to estimate the patient's 10-year risk of developing cardiovascular disease (CVD) should be used to identify high-risk people for primary prevention. Current evidence confirms that appropriate monitoring and control of risk factors either reduces the likelihood of CVD or slows down its progression. It is thus crucial that all health professionals make appropriate use of all the available intervention strategies to control risk factors: from dietary improvement and adequate physical activity to the use of functional foods, food supplements, and drugs. The gut microbiota, which encompasses 1 × 1014 resident microorganisms, has been recently recognized as a contributing factor in the development of human disease. This review examines the effect of both some vegetable food components belong to the "protein food group" and the underexploited protein-rich hempseed on cholesterolemia and gut microbiota composition.


Subject(s)
Cardiovascular Diseases/prevention & control , Diet, Healthy , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Hypercholesterolemia/diet therapy , Nutritive Value , Plant Proteins, Dietary/administration & dosage , Vegetables , Animals , Biomarkers/blood , Cardiovascular Diseases/immunology , Cardiovascular Diseases/microbiology , Cholesterol/blood , Humans , Hypercholesterolemia/blood , Hypercholesterolemia/epidemiology , Nutritional Status , Plant Proteins, Dietary/metabolism , Protective Factors , Recommended Dietary Allowances , Risk Factors , Risk Reduction Behavior
19.
Atherosclerosis ; 271: 156-165, 2018 04.
Article in English | MEDLINE | ID: mdl-29518748

ABSTRACT

LPP3 is an integral membrane protein belonging to a family of enzymes (LPPs) that display broad substrate specificity and catalyse dephosphorylation of several lipid substrates, including lysophosphatidic acid and sphingosine-1-phosphate. In mammals, the LPP family consists of three enzymes named LPP1, LPP2 and LPP3, which are encoded by three independent genes, PLPP1, PLPP2 and PLPP3, respectively (formerly known as PPAP2A, PPAP2C, PPAP2B). These three enzymes, in vitro, do not seem to differ for catalytic activities and substrate preferences. However, in vivo targeted inactivation of the individual genes has indicated that the enzymes do not have overlapping functions and that LPP3, specifically, plays a crucial role in vascular development. In 2011, two genome-wide association studies have identified PLPP3 as a novel locus associated with coronary artery disease susceptibility. Shortly after these reports, tissue specific inactivation of PLPP3 in mice highlighted a specific role for LPP3 in vascular pathophysiology and, more recently, in atherosclerosis development. This review is aimed at providing an updated overview on the function of LPP3 in embryonic cardiovascular development and on the experimental and clinical evidences relating this enzyme to vascular cell functions and cardiovascular disease.


Subject(s)
Coronary Artery Disease/enzymology , Coronary Vessels/enzymology , Phosphatidate Phosphatase/metabolism , Animals , Coronary Artery Disease/genetics , Coronary Artery Disease/physiopathology , Coronary Vessels/physiopathology , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Humans , Phosphatidate Phosphatase/chemistry , Phosphatidate Phosphatase/genetics , Polymorphism, Genetic , Protein Conformation , Risk Factors , Signal Transduction , Structure-Activity Relationship
20.
Mol Nutr Food Res ; 61(12)2017 12.
Article in English | MEDLINE | ID: mdl-28812326

ABSTRACT

SCOPE: Antarctic krill is a great source of n-3 fatty acids and high-quality proteins. Aim of the study was to evaluate the effect of Antarctic krill components on plasma lipids and atherosclerosis development. METHODS AND RESULTS: Sixty apoEKO mice were divided into four groups and fed Western diet (CONTROL) or Western-like diets, differing for protein or fat content. Specifically, casein or fat in CONTROL was partially replaced by krill proteins (PRO), krill oil (KRILL OIL), or both (KRILL OIL+PRO). In KRILL OIL+PRO and KRILL OIL, cholesterol levels were significantly lower than in CONTROL group. Atherosclerosis in aorta of PRO, KRILL OIL and KRILL OIL+PRO was lower than in CONTROL, whereas, at the aortic sinus, atherosclerosis reduction was only observed in KRILL OIL. Liver steatosis, commonly present in CONTROL and PRO animals, was sporadic in KRILL OIL+PRO and KRILL OIL mice. Krill oil containing diets affected the expression of genes involved in cholesterol metabolism, mainly HMG-CoA reductase. No reduced systemic inflammation was found in all groups. CONCLUSION: Krill oil containing diets were able to reduce cholesterol levels, inhibit plaque development and prevent liver damage. Krill proteins also reduced atherosclerosis development through mechanisms not involving lipid metabolism.


Subject(s)
Atherosclerosis/diet therapy , Dietary Fats, Unsaturated/pharmacology , Dietary Proteins/pharmacology , Euphausiacea/chemistry , Animals , Antarctic Regions , Antioxidants/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Body Weight/drug effects , Cholesterol/blood , Cholesterol/genetics , Diet, Western , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Intestines/drug effects , Intestines/physiology , Lipids/blood , Liver/drug effects , Liver/physiology , Mice, Knockout, ApoE
SELECTION OF CITATIONS
SEARCH DETAIL
...