Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125013

ABSTRACT

Carvacrol and thymol are broad-spectrum natural antimicrobial agents. To reduce their volatility and improve their antimicrobial performance, synergistic systems were prepared loading the active molecules in zinc-modified clays. Montmorillonite (MMT) and zeolite (ZEO) were modified with zinc ions (ZnMMT and ZnZEO), with well-known antimicrobial properties, and then with carvacrol or thymol, reaching the 26 ± 3% and 33 ± 2% w/w of loading, respectively. The resulting hybrid materials were characterized by FT-IR, XPS, XRD, TGA, and GC-MS to evaluate carvacrol/thymol release in simulating food matrices. Antimicrobial assays carried out using spoiler and pathogenic bacterial strains showed that the antimicrobial activity of both thymol and carvacrol was largely preserved once they were loaded into Zn-modified clays. However, MMT hybrids showed an antibacterial activity significantly higher than ZEO hybrids at 50 mg/mL of thymol and carvacrol. For this reason, deeper antimicrobial evaluations were carried out only for ZnMMT composites. ZnMMT loaded with thymol or carvacrol produced inhibition zones against most of the target strains, also at 3.12 mg/mL, while the positive controls represented by the single molecule thymol or carvacrol were not active. The hybrid materials can be useful for applications in which the antimicrobial activity of natural molecules need to be displayed over time as requested for the control of microbial pathogens and spoilage bacteria in different applications, such as active packaging, biomaterials, and medical devices.


Subject(s)
Anti-Infective Agents , Clay , Cymenes , Microbial Sensitivity Tests , Thymol , Zinc , Cymenes/chemistry , Cymenes/pharmacology , Thymol/chemistry , Thymol/pharmacology , Zinc/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Clay/chemistry , Spectroscopy, Fourier Transform Infrared , Bacteria/drug effects , Bentonite/chemistry
2.
Int J Biol Macromol ; 277(Pt 1): 134079, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038574

ABSTRACT

In this study, we developed a composite hydrogel based on Gellan gum containing Boswellia serrata extract (BSE). BSE was either incorporated directly or loaded into an MgAl-layered double hydroxide (LDH) clay to create a multifunctional cartilage substitute. This composite was designed to provide anti-inflammatory properties while enhancing chondrogenesis. Additionally, LDH was exploited to facilitate the loading of hydrophobic BSE components and to improve the hydrogel's mechanical properties. A calcination process was also adopted on LDH to increase BSE loading. Physicochemical and mechanical characterizations were performed by spectroscopic (XPS and FTIR), thermogravimetric, rheological, compression test, weight loss and morphological (SEM) investigations. RPLC-ESI-FTMS was employed to investigate the boswellic acids release in simulated synovial fluid. The composites were cytocompatible and capable of supporting the mesenchymal stem cells (hMSC) growth in a 3D-conformation. Loading BSE resulted in the modulation of the pro-inflammatory cascade by down-regulating COX2, PGE2 and IL1ß. Chondrogenesis studies demonstrated an enhanced differentiation, leading to the up-regulation of COL 2 and ACAN. This effect was attributed to the efficacy of BSE in reducing the inflammation through PGE2 down-regulation and IL10 up-regulation. Proteomics studies confirmed gene expression findings by revealing an anti-inflammatory protein signature during chondrogenesis of the cells cultivated onto loaded specimens. Concluding, BSE-loaded composites hold promise as a tool for the in-situ modulation of the inflammatory cascade while preserving cartilage healing.


Subject(s)
Boswellia , Cartilage , Chondrogenesis , Plant Extracts , Polysaccharides, Bacterial , Boswellia/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chondrogenesis/drug effects , Cartilage/drug effects , Cartilage/metabolism , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Humans , Wound Healing/drug effects , Hydrogels/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Inflammation/drug therapy , Inflammation/pathology , Triterpenes
3.
Molecules ; 28(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37764225

ABSTRACT

Boswellia serrata Roxb. extract (BSE), rich in boswellic acids, is well known as a potent anti-inflammatory natural drug. However, due to its limited aqueous solubility, BSE inclusion into an appropriate carrier, capable of improving its release in the biological target, would be highly desirable. Starting with this requirement, new hybrid composites based on the inclusion of BSE in a lamellar solid layered double hydroxide (LDH), i.e., magnesium aluminum carbonate, were developed and characterized in the present work. The adopted LDH exhibited a layered crystal structure, comprising positively charged hydroxide layers and interlayers composed of carbonate anions and water molecules; thus, it was expected to embed negatively charged boswellic acids. In the present case, a calcination process was also adopted on the LDH to increase organic acid loading, based on the replacement of the original inorganic anions. An accurate investigation was carried out by TGA, PXRD, FT-IR/ATR, XPS, SEM, and LC-MS to ascertain the nature, interaction, and quantification of the active molecules of the vegetal extract loaded in the developed hybrid materials. As a result, the significant disruption of the original layered structure was observed in the LDH subjected to calcination (LDHc), and this material was able to include a higher amount of organic acids when its composite with BSE was prepared. However, in vitro tests on the composites' bioactivity, expressed in terms of antimicrobial and anti-inflammatory activity, evidenced LDH-BSE as a better material compared to BSE and to LDHc-BSE, thus suggesting that, although the embedded organic acid amount was lower, they could be more available since they were not firmly bound to the clay. The composite was able to significantly decrease the number of viable pathogens such as Escherichia coli and Staphylococcus aureus, as well as the internalization of toxic active species into human cells imposing oxidative stress, in comparison to the BSE.

4.
Molecules ; 28(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298828

ABSTRACT

Olea europaea L. leaf extracts (OLEs) represent highly value-added agro-industrial byproducts, being promising sources of significant antioxidant compounds, such as their main component, oleuropein. In this work, hydrogel films based on low-acyl gellan gum (GG) blended with sodium alginate (NaALG) were loaded with OLE and crosslinked with tartaric acid (TA). The films' ability to act as an antioxidant and photoprotectant against UVA-induced photoaging, thanks to their capability to convey oleuropein to the skin, were examined with the aim of a potential application as facial masks. Biological in vitro performances of the proposed materials were tested on normal human dermal fibroblasts (NhDFs), both under normal conditions and after aging-induced UVA treatment. Overall, our results clearly show the intriguing properties of the proposed hydrogels as effective and fully naturally formulated anti-photoaging smart materials for potential use as facial masks.


Subject(s)
Skin Aging , Skin Diseases , Humans , Alginates/pharmacology , Antioxidants/pharmacology , Polysaccharides, Bacterial/pharmacology
5.
Pharmaceutics ; 14(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36145700

ABSTRACT

Cutibacterium acnes (C. acnes) is the main causative agent of acne vulgaris. The study aims to evaluate the antimicrobial activity of a natural product, Arctostaphylos uva-ursi leaf extract, against C. acnes. Preliminary chemical-physical characterization of the extract was carried out by means of FT-IR, TGA and XPS analyses. Skin permeation kinetics of the extract conveyed by a toning lotion was studied in vitro by Franz diffusion cell, monitoring the permeated arbutin (as the target component of the extract) and the total phenols by HPLC and UV-visible spectrophotometry, respectively. Antimicrobial activity and time-killing assays were performed to evaluate the effects of Arctostaphylos uva-ursi leaf extract against planktonic C. acnes. The influence of different Arctostaphylos uva-ursi leaf extract concentrations on the biofilm biomass inhibition and degradation was evaluated by the crystal violet (CV) method. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test was used to determine the viability of immortalized human keratinocytes (HaCaT) after exposure to Arctostaphylos uva-ursi leaf extract for 24 and 48 h. Levels of interleukin (IL)-1ß, IL-6, IL-8 and tumour necrosis factor (TNF)-α were quantified after HaCaT cells cotreatment with Arctostaphylos uva-ursi leaf extract and heat-killed C. acnes. The minimum inhibitory concentration (MIC) which exerted a bacteriostatic action on 90% of planktonic C. acnes (MIC90) was 0.6 mg/mL. Furthermore, MIC and sub-MIC concentrations influenced the biofilm formation phases, recording a percentage of inhibition that exceeded 50 and 40% at 0.6 and 0.3 mg/mL. Arctostaphylos uva-ursi leaf extract disrupted biofilm biomass of 57 and 45% at the same concentrations mentioned above. Active Arctostaphylos uva-ursi leaf extract doses did not affect the viability of HaCaT cells. On the other hand, at 1.25 and 0.6 mg/mL, complete inhibition of the secretion of pro-inflammatory cytokines was recorded. Taken together, these results indicate that Arctostaphylos uva-ursi leaf extract could represent a natural product to counter the virulence of C. acnes, representing a new alternative therapeutic option for the treatment of acne vulgaris.

6.
Molecules ; 27(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35807518

ABSTRACT

In the present study, a hydroxytyrosol-rich Olea europaea L. fruit extract (OFE) was added to three thoroughly green formulations-hydrogel, oleogel, and cream-in order to evaluate their antiviral activity against HSV-1. The extract was characterized by different analytical techniques, i.e., FT-IR, XPS, and TGA. HPLC analyses were carried out to monitor the content and release of hydroxytyrosol in the prepared formulations. The total polyphenol content and antioxidant activity were investigated through Folin-Ciocâlteu's reagent, DPPH, and ABTS assays. The ability of the three formulations to convey active principles to the skin was evaluated using a Franz cell, showing that the number of permeated polyphenols in the hydrogel (272.1 ± 1.8 GAE/g) was significantly higher than those in the oleogel and cream (174 ± 10 and 179.6 ± 2 GAE/g, respectively), even if a negligible amount of hydroxytyrosol crossed the membrane for all the formulations. The cell viability assay indicated that the OFE and the three formulations were not toxic to cultured Vero cells. The antiviral activity tests highlighted that the OFE had a strong inhibitory effect against HSV-1 with a 50% inhibitory concentration (IC50) at 25 µg/mL, interfering directly with the viral particles. Among the three formulations, the hydrogel exhibited the highest antiviral activity also against the acyclovir-resistant strain.


Subject(s)
Herpesvirus 1, Human , Olea , Animals , Antioxidants/analysis , Antioxidants/pharmacology , Antiviral Agents/analysis , Antiviral Agents/pharmacology , Chlorocebus aethiops , Fruit/chemistry , Hydrogels/pharmacology , Olea/chemistry , Plant Extracts/chemistry , Polyphenols/analysis , Polyphenols/pharmacology , Spectroscopy, Fourier Transform Infrared , Vero Cells
7.
Cell Mol Life Sci ; 78(4): 1501-1522, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32623480

ABSTRACT

The recent severe acute respiratory syndrome, known as Coronavirus Disease 2019 (COVID-19) has spread so much rapidly and severely to induce World Health Organization (WHO) to declare a state of emergency over the new coronavirus SARS-CoV-2 pandemic. While several countries have chosen the almost complete lock-down for slowing down SARS-CoV-2 spread, the scientific community is called to respond to the devastating outbreak by identifying new tools for diagnosis and treatment of the dangerous COVID-19. With this aim, we performed an in silico comparative modeling analysis, which allows gaining new insights into the main conformational changes occurring in the SARS-CoV-2 spike protein, at the level of the receptor-binding domain (RBD), along interactions with human cells angiotensin-converting enzyme 2 (ACE2) receptor, that favor human cell invasion. Furthermore, our analysis provides (1) an ideal pipeline to identify already characterized antibodies that might target SARS-CoV-2 spike RBD, aiming to prevent interactions with the human ACE2, and (2) instructions for building new possible neutralizing antibodies, according to chemical/physical space restraints and complementary determining regions (CDR) mutagenesis of the identified existing antibodies. The proposed antibodies show in silico high affinity for SARS-CoV-2 spike RBD and can be used as reference antibodies also for building new high-affinity antibodies against present and future coronaviruses able to invade human cells through interactions of their spike proteins with the human ACE2. More in general, our analysis provides indications for the set-up of the right biological molecular context for investigating spike RBD-ACE2 interactions for the development of new vaccines, diagnostic kits, and other treatments based on the targeting of SARS-CoV-2 spike protein.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , COVID-19/virology , Receptors, Coronavirus/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Humans , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs
SELECTION OF CITATIONS
SEARCH DETAIL