Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Nutrients ; 15(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38140397

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a disease characterized by the accumulation of mature CD19+CD5+CD23+ B cells in the bloodstream and in lymphoid organs. It usually affects people over 70 years of age, which limits the options for treatments. The disease is typically well-managed, but to date is still incurable. Hence, the need for novel therapeutic strategies remains. Nurse-like cells (NLCs) are major components of the microenvironment for CLL, supporting tumor cell survival, proliferation, and even drug resistance. They are of myeloid lineage, guided toward differentiating into their tumor-supportive role by the CLL cells themselves. As such, they are analogous to tumor-associated macrophages and represent a major therapeutic target. Previously, it was found that a mushroom extract, Active Hexose-Correlated Compound (AHCC), promoted the death of acute myeloid leukemia cells while preserving normal monocytes. Given these findings, it was asked whether AHCC might have a similar effect on the abnormally differentiated myeloid-lineage NLCs in CLL. CLL-patient PBMCs were treated with AHCC, and it was found that AHCC treatment showed a direct toxic effect against isolated CLL cells. In addition, it significantly reduced the number of tumor-supportive NLCs and altered their phenotype. The effects of AHCC were then tested in the Eµ-TCL1 mouse model of CLL and the MllPTD/WT Flt3ITD/WT model of AML. Results showed that AHCC not only reduced tumor load and increased survival in the CLL and AML models, but it also enhanced antitumor antibody treatment in the CLL model. These results suggest that AHCC has direct and indirect effects against CLL and that it may be of benefit when combined with existing treatments.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia, Myeloid, Acute , Mice , Animals , Humans , Aged , Aged, 80 and over , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Myeloid Cells/metabolism , Monocytes/metabolism , Hexoses/pharmacology , Tumor Microenvironment
2.
Cells ; 12(11)2023 05 27.
Article in English | MEDLINE | ID: mdl-37296612

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterized by the presence of dense stroma that is enriched in hyaluronan (HA), with increased HA levels associated with more aggressive disease. Increased levels of the HA-degrading enzymes hyaluronidases (HYALs) are also associated with tumor progression. In this study, we evaluate the regulation of HYALs in PDAC. METHODS: Using siRNA and small molecule inhibitors, we evaluated the regulation of HYALs using quantitative real-time PCR (qRT-PCR), Western blot analysis, and ELISA. The binding of BRD2 protein on the HYAL1 promoter was evaluated by chromatin immunoprecipitation (ChIP) assay. Proliferation was evaluated by WST-1 assay. Mice with xenograft tumors were treated with BET inhibitors. The expression of HYALs in tumors was analyzed by immunohistochemistry and by qRT-PCR. RESULTS: We show that HYAL1, HYAL2, and HYAL3 are expressed in PDAC tumors and in PDAC and pancreatic stellate cell lines. We demonstrate that inhibitors targeting bromodomain and extra-terminal domain (BET) proteins, which are readers of histone acetylation marks, primarily decrease HYAL1 expression. We show that the BET family protein BRD2 regulates HYAL1 expression by binding to its promoter region and that HYAL1 downregulation decreases proliferation and enhances apoptosis of PDAC and stellate cell lines. Notably, BET inhibitors decrease the levels of HYAL1 expression in vivo without affecting the levels of HYAL2 or HYAL3. CONCLUSIONS: Our results demonstrate the pro-tumorigenic role of HYAL1 and identify the role of BRD2 in the regulation of HYAL1 in PDAC. Overall, these data enhance our understanding of the role and regulation of HYAL1 and provide the rationale for targeting HYAL1 in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Animals , Mice , Hyaluronoglucosaminidase/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/metabolism , Proteins , Hyaluronic Acid/metabolism
3.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108786

ABSTRACT

Overactivation of immune responses is a hallmark of autoimmune disease pathogenesis. This includes the heightened production of inflammatory cytokines such as Tumor Necrosis Factor α (TNFα), and the secretion of autoantibodies such as isotypes of rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA). Fcγ receptors (FcγR) expressed on the surface of myeloid cells bind Immunoglobulin G (IgG) immune complexes. Recognition of autoantigen-antibody complexes by FcγR induces an inflammatory phenotype that results in tissue damage and further escalation of the inflammatory response. Bromodomain and extra-terminal protein (BET) inhibition is associated with reduced immune responses, making the BET family a potential therapeutic target for autoimmune diseases such as rheumatoid arthritis (RA). In this paper, we examined the BET inhibitor PLX51107 and its effect on regulating FcγR expression and function in RA. PLX51107 significantly downregulated expression of FcγRIIa, FcγRIIb, FcγRIIIa, and the common γ-chain, FcϵR1-γ, in both healthy donor and RA patient monocytes. Consistent with this, PLX51107 treatment attenuated signaling events downstream of FcγR activation. This was accompanied by a significant decrease in phagocytosis and TNFα production. Finally, in a collagen-induced arthritis model, PLX51107-treatment reduced FcγR expression in vivo accompanied by a significant reduction in footpad swelling. These results suggest that BET inhibition is a novel therapeutic approach that requires further exploration as a treatment for patients with RA.


Subject(s)
Arthritis, Rheumatoid , Receptors, IgG , Humans , Arthritis, Rheumatoid/metabolism , Inflammation/metabolism , Monocytes/metabolism , Receptors, IgG/metabolism , Tumor Necrosis Factor-alpha/metabolism , Nerve Tissue Proteins/metabolism
4.
J Immunol ; 209(6): 1212-1223, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35995507

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia, but, despite advances in treatment, many patients still experience relapse. CLL cells depend on interactions with supportive cells, and nurse-like cells (NLCs) are the major such cell type. However, little is known about how NLCs develop. Here, we performed DNA methylation analysis of CLL patient-derived NLCs using the 850K Illumina array, comparing CD14+ cells at day 1 (monocytes) versus day 14 (NLCs). We found a strong loss of methylation in AP-1 transcription factor binding sites, which may be driven by MAPK signaling. Testing of individual MAPK pathways (MEK, p38, and JNK) revealed a strong dependence on MEK/ERK for NLC development, because treatment of patient samples with the MEK inhibitor trametinib dramatically reduced NLC development in vitro. Using the adoptive transfer Eµ-TCL1 mouse model of CLL, we found that MEK inhibition slowed CLL progression, leading to lower WBC counts and to significantly longer survival time. There were also lower numbers of mouse macrophages, particularly within the M2-like population. In summary, NLC development depends on MEK signaling, and inhibition of MEK leads to increased survival time in vivo. Hence, targeting the MEK/ERK pathway may be an effective treatment strategy for CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Cell Differentiation , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Monocytes/metabolism , Transcription Factor AP-1/metabolism
5.
ACS Appl Nano Mater ; 4(3): 3122-3139, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-34027313

ABSTRACT

BACKGROUND: fluorescent nanodiamonds (FND) are nontoxic, infinitely photostable nanoparticles that emit near-infrared fluorescence and have a modifiable surface allowing for the generation of protein-FND conjugates. FND-mediated immune cell targeting may serve as a strategy to visualize immune cells and promote immune cell activation. METHODS: uncoated-FND (uFND) were fabricated, coated with glycidol (gFND), and conjugated with immunoglobulin G (IgG-gFND). In vitro studies were performed using a breast cancer/natural killer/monocyte co-culture system, and in vivo studies were performed using a breast cancer mouse model. RESULTS: in vitro studies demonstrated the targeted immune cell uptake of IgG-gFND, resulting in significant immune cell activation and no compromise in immune cell viability. IgG-gFND remained at the tumor site following intratumoral injection compared to uFND which migrated to the liver and kidneys. CONCLUSION: antibody-conjugated FND may serve as immune drug delivery vehicles with "track and trace capabilities" to promote directed antitumor activity and minimize systemic toxicities.

6.
Oncotarget ; 12(9): 878-890, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33953842

ABSTRACT

Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid blasts and a suppressed immune state. Interferons have been previously shown to aid in the clearance of AML cells. Type I interferons are produced primarily by plasmacytoid dendritic cells (pDCs). However, these cells exist in a quiescent state in AML. Because pDCs express TLR 7-9, we hypothesized that the TLR7/8 agonist R848 would be able to reprogram them toward a more active, IFN-producing phenotype. Consistent with this notion, we found that R848-treated pDCs from patients produced significantly elevated levels of IFNß. In addition, they showed increased expression of the immune-stimulatory receptor CD40. We next tested whether IFNß would influence antibody-mediated fratricide among AML cells, as our recent work showed that AML cells could undergo cell-to cell killing in the presence of the CD38 antibody daratumumab. We found that IFNß treatment led to a significant, IRF9-dependent increase in CD38 expression and a subsequent increase in daratumumab-mediated cytotoxicity and decreased colony formation. These findings suggest that the tolerogenic phenotype of pDCs in AML can be reversed, and also demonstrate a possible means of enhancing endogenous Type I IFN production that would promote daratumumab-mediated clearance of AML cells.

7.
J Immunol ; 204(7): 1988-1997, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32094205

ABSTRACT

TLRs, a family of membrane-bound pattern recognition receptors found on innate immune cells, have been well studied in the context of cancer therapy. Activation of these receptors has been shown to induce inflammatory anticancer events, including differentiation and apoptosis, across a wide variety of malignancies. In contrast, intracellular pattern recognition receptors such as NOD-like receptors have been minimally studied. NOD2 is a member of the NOD-like receptor family that initiates inflammatory signaling in response to the bacterial motif muramyl dipeptide. In this study, we examined the influence of NOD2 in human acute myeloid leukemia (AML) cells, demonstrating that IFN-γ treatment upregulated the expression of NOD2 signaling pathway members SLC15A3 and SLC15A4, downstream signaling kinase RIPK2, and the NOD2 receptor itself. This priming allowed for effective induction of caspase-1-dependent cell death upon treatment with muramyl tripeptide phosphatidylethanolamine (MTP-PE), a synthetic ligand for NOD2. Furthermore, the combination of MTP-PE and IFN-γ on AML blasts generated an inflammatory cytokine profile and activated NK cells. In a murine model of AML, dual treatment with MTP-PE and IFN-γ led to a significant increase in mature CD27- CD11b+ NK cells as well as a significant reduction in disease burden and extended survival. These results suggest that NOD2 activation, primed by IFN-γ, may provide a novel therapeutic option for AML.


Subject(s)
Apoptosis/physiology , Leukemia, Myeloid, Acute/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Receptors, Pattern Recognition/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Interferon-gamma/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Signal Transduction/physiology , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
8.
J Immunol ; 203(12): 3216-3224, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31732534

ABSTRACT

Monocytes and macrophages express FcγR that engage IgG immune complexes such as Ab-opsonized pathogens or cancer cells to destroy them by various mechanisms, including phagocytosis. FcγR-mediated phagocytosis is regulated by the concerted actions of activating FcγR and inhibitory receptors, such as FcγRIIb and SIRPα. In this study, we report that another ITIM-containing receptor, PECAM1/CD31, regulates FcγR function and is itself regulated by FcγR activation. First, quantitative RT-PCR and flow cytometry analyses revealed that human monocyte FcγR activation leads to a significant downregulation of CD31 expression, both at the message level and at surface expression, mainly mediated through FcγRIIa. Interestingly, the kinetics of downregulation between the two varied, with surface expression reducing earlier than the message. Experiments to analyze the mechanism behind this discrepancy revealed that the loss of surface expression was because of internalization, which depended predominantly on the PI3 kinase pathway and was independent of FcγR internalization. Finally, functional analyses showed that the downregulation of CD31 expression in monocytes by small interfering RNA enhanced FcγR-mediated phagocytic ability but have little effect on cytokine production. Together, these results suggest that CD31 acts as a checkpoint receptor that could be targeted to enhance FcγR functions in Ab-mediated therapies.


Subject(s)
Monocytes/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptors, IgG/metabolism , Antigen-Antibody Complex/immunology , Blood Donors , Cytokines/metabolism , Down-Regulation , Gene Knockdown Techniques , Humans , Immunoglobulin G/metabolism , Phagocytosis/genetics , Phosphatidylinositol 3-Kinases/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , RNA, Small Interfering/genetics , Signal Transduction/immunology
9.
Oncoimmunology ; 8(11): 1659704, 2019.
Article in English | MEDLINE | ID: mdl-31646085

ABSTRACT

An inflammatory microenvironment has been shown to play an important role in the growth and metastasis of tumors. The NLRP3 inflammasome is a multi-protein complex of the innate immune system that is responsible for the production of the potent inflammatory cytokine IL-1ß. Tumor- associated macrophages (TAM) are an expanded population of immune cells found in the tumor microenvironment that can promote the initiation and metastasis of tumor cells. Their presence has been correlated with disease burden, highlighting the therapeutic potential of targeting this population. However, to date clinically relevant pharmacologic strategies to target TAM remain elusive. Here, we show that in vitro generated TAM harbor NLRP3 inflammasome components and produce IL-1ß. Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase (BTK), is in clinical use for the treatment of B- cell malignancies. We report that BTK is expressed by human in vitro generated TAM and murine macrophages and that it physically associates with the NLRP3 inflammasome. Furthermore, ibrutinib is able to inhibit BTK phosphorylation in TAM generated in vitro. Treatment of TAM with ibrutinib significantly impaired the ability of these cells to produce IL-1ß. The present study provides evidence that BTK physically associates with the NLRP3 inflammasome and that inhibition of BTK with ibrutinib can impair the production of IL-1ß by in vitro generated TAM. Thus, ibrutinib could potentially be of clinical use in abrogating inflammation-associated cancer progression and the immune-suppressive effects of myeloid cells within the tumor microenvironment.

10.
J Immunother Cancer ; 7(1): 140, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138333

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAM) are expanded and exhibit tumor-promoting properties within the tumor microenvironment. Current methods to study TAM have not been replicated across cancer types and often do not include exogenous growth factors from the tumor, a key factor in TAM differentiation in vivo. METHODS: In this study, an in vitro method to generate monocyte- derived TAM using tumor- conditioned media (TCM) and a cytokine cocktail containing IL-4, IL-10, and M-CSF was utilized to study the phenotype, morphology, and function of TAM across multiple cancer types. TCM was generated from two breast cancer cell lines and an Epstein-Barr virus-positive lymphoma cell line. The properties of in vitro generated TAM were compared to in vitro generated M1 and M2- like macrophages and TAM isolated from patients with cancer. RESULTS: TAM generated in this fashion displayed an increase in CD163/CD206 co-expression compared to M2- like macrophages (87 and 36%, respectively). TAM generated in vitro exhibited increased transcript levels of the functional markers IL-6, IL-10, CCL2, c-Myc, iNOS, and arginase compared to in vitro generated M2-like macrophages. Functionally, in vitro generated TAM inhibited the proliferation of T cells (47% decrease from M1-like macrophages) and the production of IFN-γ by natural killer cells was inhibited (44%) when co-cultured with TAM. Furthermore, in vitro generated TAM secreted soluble factors that promote the growth and survival of tumor cells. CONCLUSIONS: Limited access to patient TAM highlights the need for methods to generate TAM in vitro. Our data confirm that monocyte-derived TAM can be generated reliably using TCM plus the cytokine cocktail of IL-4, IL-10, and M-CSF. Given the ability of TAM to inhibit immune cell function, continued study of methods to deplete or deactivate TAM in the setting of cancer are warranted.


Subject(s)
Cell Transformation, Neoplastic/pathology , Immunotherapy/methods , Macrophages/pathology , Cell Differentiation , Cell Line, Tumor , Culture Media, Conditioned , Humans , Tumor Microenvironment
11.
Int Immunol ; 30(8): 375-383, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29868798

ABSTRACT

Acute myeloid leukemia (AML) remains a significant health problem, with poor outcomes despite chemotherapy and bone marrow transplants. Although one form of AML, acute promyelocytic leukemia (APL), is successfully treated with all-trans retinoic acid (ATRA), this drug is seemingly ineffective against all other forms of AML. Here, we show that ATRA up-regulates CD38 expression on AML blasts to sufficient levels that promote antibody-mediated fratricide following the addition of anti-CD38 daratumumab (DARA). The combination of ATRA plus DARA induced Fc-dependent conjugate formation and cytotoxicity among AML blasts in vitro. Combination treatment also led to reduction in tumor volume and resulted in increased overall survival in murine engraftment models of AML. These results suggest that, although ATRA does not induce differentiation of non-APL, it may be effective as a therapy in conjunction with DARA.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Tretinoin/pharmacology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Drug Therapy, Combination , Humans , Leukemia, Myeloid, Acute/pathology , Tretinoin/chemistry , Tretinoin/therapeutic use , Tumor Cells, Cultured
12.
PLoS One ; 12(7): e0181729, 2017.
Article in English | MEDLINE | ID: mdl-28727820

ABSTRACT

Active Hexose Correlated Compound (AHCC) has been shown to have many immunostimulatory and anti-cancer activities in mice and in humans. As a natural product, AHCC has potential to create safer adjuvant therapies in cancer patients. Acute Myeloid Leukemia (AML) is the least curable and second-most common leukemia in adults. AML is especially terminal to those over 60 years old, where median survival is only 5 to 10 months, due to inability to receive intensive chemotherapy. Hence, the purpose of this study was to investigate the effects of AHCC on AML cells both in vitro and in vivo. Results showed that AHCC induced Caspase-3-dependent apoptosis in AML cell lines as well as in primary AML leukopheresis samples. Additionally, AHCC induced Caspase-8 cleavage as well as Fas and TRAIL upregulation, suggesting involvement of the extrinsic apoptotic pathway. In contrast, monocytes from healthy donors showed suppressed Caspase-3 cleavage and lower cell death. When tested in a murine engraftment model of AML, AHCC led to significantly increased survival time and decreased blast counts. These results uncover a mechanism by which AHCC leads to AML-cell specific death, and also lend support for the further investigation of AHCC as a potential adjuvant for the treatment of AML.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Polysaccharides/pharmacology , Animals , Apoptosis/physiology , Blotting, Western , Caspase 3/metabolism , Caspase 8/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Leukemia, Myeloid, Acute/metabolism , Mice, SCID , Monocytes/drug effects , Monocytes/metabolism , Neoplasm Transplantation , Real-Time Polymerase Chain Reaction , TNF-Related Apoptosis-Inducing Ligand/metabolism , fas Receptor/metabolism
13.
Nanomedicine ; 13(3): 909-920, 2017 04.
Article in English | MEDLINE | ID: mdl-27993723

ABSTRACT

Fluorescent nanodiamonds (FNDs) are nontoxic, infinitely photostable, and emit fluorescence in the near infrared region. Natural killer (NK) cells and monocytes are part of the innate immune system and are crucial to the control of carcinogenesis. FND-mediated stimulation of these cells may serve as a strategy to enhance anti-tumor activity. FNDs were fabricated with a diameter of 70±28 nm. Innate immune cell FND uptake, viability, surface marker expression, and cytokine production were evaluated in vitro. Evaluation of fluorescence emission from the FNDs was conducted in an animal model. In vitro results demonstrated that treatment of immune cells with FNDs resulted in significant dose-dependent FND uptake, no compromise in cell viability, and immune cell activation. FNDs were visualized in an animal model. Hence, FNDs may serve as novel agents with "track and trace" capabilities to stimulate innate immune cell anti-tumor responses, especially as FNDs are amenable to surface-conjugation with immunomodulatory molecules.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Fluorescent Dyes/therapeutic use , Immunity, Cellular/drug effects , Nanodiamonds/therapeutic use , Adjuvants, Immunologic/pharmacokinetics , Animals , Cells, Cultured , Fluorescent Dyes/pharmacokinetics , Humans , Immunity, Innate/drug effects , Immunotherapy , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Mice , Mice, Inbred BALB C , Monocytes/drug effects , Monocytes/immunology , Nanodiamonds/analysis , Neoplasms/immunology , Neoplasms/therapy , RAW 264.7 Cells
14.
J Biol Chem ; 291(49): 25656-25666, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27780867

ABSTRACT

Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid lineage blasts. Due to its heterogeneity and to the high rate of acquired drug resistance and relapse, new treatment strategies are needed. Here, we demonstrate that IFNγ promotes AML blasts to act as effector cells within the context of antibody therapy. Treatment with IFNγ drove AML blasts toward a more differentiated state, wherein they showed increased expression of the M1-related markers HLA-DR and CD86, as well as of FcγRI, which mediates effector responses to therapeutic antibodies. Importantly, IFNγ was able to up-regulate CD38, the target of the therapeutic antibody daratumumab. Because the antigen (CD38) and effector receptor (FcγRI) were both simultaneously up-regulated on the AML blasts, we tested whether IFNγ treatment of the AML cell lines THP-1 and MV4-11 could stimulate them to target one another after the addition of daratumumab. Results showed that IFNγ significantly increased daratumumab-mediated cytotoxicity, as measured both by 51Cr release and lactate dehydrogenase release assays. We also found that the combination of IFNγ and activation of FcγR led to the release of granzyme B by AML cells. Finally, using a murine NSG model of subcutaneous AML, we found that treatment with IFNγ plus daratumumab significantly attenuated tumor growth. Taken together, these studies show a novel mechanism of daratumumab-mediated killing and a possible new therapeutic strategy for AML.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cytotoxins/pharmacology , Interferon-gamma/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Animals , Cell Line, Tumor , Female , Granzymes/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/metabolism , Receptors, IgG/metabolism , Xenograft Model Antitumor Assays
15.
J Biol Chem ; 291(27): 14356-14362, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27226587

ABSTRACT

Nurse-like cells (NLCs) play a central role in chronic lymphocytic leukemia (CLL) because they promote the survival and proliferation of CLL cells. NLCs are derived from the monocyte lineage and are driven toward their phenotype via contact-dependent and -independent signals from CLL cells. Because of the central role of NLCs in promoting disease, new strategies to eliminate or reprogram them are needed. Successful reprogramming may be of extra benefit because NLCs express Fcγ receptors (FcγRs) and thus could act as effector cells within the context of antibody therapy. IFNγ is known to promote the polarization of macrophages toward an M1-like state that is no longer tumor-supportive. In an effort to reprogram the phenotype of NLCs, we found that IFNγ up-regulated the M1-related markers CD86 and HLA-DR as well as FcγRIa. This corresponded to enhanced FcγR-mediated cytokine production as well as rituximab-mediated phagocytosis of CLL cells. In addition, IFNγ down-regulated the expression of CD31, resulting in withdrawal of the survival advantage on CLL cells. These results suggest that IFNγ can re-educate NLCs and shift them toward an effector-like state and that therapies promoting local IFNγ production may be effective adjuvants for antibody therapy in CLL.


Subject(s)
Cell Survival , Interferon-gamma/administration & dosage , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , B7-2 Antigen/metabolism , Cells, Cultured , HLA-DR Antigens/metabolism , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Phagocytosis , Receptors, IgG/metabolism
16.
Cancer Immunol Res ; 4(4): 323-336, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26865456

ABSTRACT

Optimally effective antitumor therapies would not only activate immune effector cells but also engage them at the tumor. Folate conjugated to immunoglobulin (F-IgG) could direct innate immune cells with Fc receptors to folate receptor-expressing cancer cells. F-IgG bound to human KB and HeLa cells, as well as murine L1210JF, a folate receptor (FR)-overexpressing cancer cell line, as determined by flow cytometry. Recognition of F-IgG by natural killer (NK) cell Fc receptors led to phosphorylation of the ERK transcription factor and increased NK cell expression of CD69. Lysis of KB tumor cells by NK cells increased by about 5-fold after treatment with F-IgG, an effect synergistically enhanced by treatment with IL2, IL12, IL15, or IL21 (P< 0.001). F-IgG also enhanced the lysis of chronic lymphocytic leukemia cells by autologous NK cells. NK cells significantly increased production of IFNγ, MIP-1α, and RANTES in response to F-IgG-coated KB target cells in the presence of the NK cell-activating cytokine IL12, and these coculture supernatants induced significant T-cell chemotaxis (P< 0.001). F-IgG-coated targets also stimulated FcR-mediated monocyte effector functions. Studies in a murine leukemia model confirmed the intratumoral localization and antitumor activity of F-IgG, as well as enhancement of its effects by IL12 (P =0.05). The antitumor effect of this combination was dependent on NK cells and led to decreased tumor cell proliferation in vivo Thus, F-IgG can induce an immune response against FR-positive tumor cells that is mediated by NK cells and can be augmented by cytokine therapy.


Subject(s)
Cytokines/metabolism , Cytotoxicity, Immunologic , Folic Acid/administration & dosage , Immunoconjugates/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic/drug effects , Disease Models, Animal , Female , Folate Receptor 1/genetics , Folate Receptor 1/metabolism , Gene Expression , Humans , Immunoglobulin G/immunology , Immunomodulation , Interleukin-12/biosynthesis , Lymphocyte Activation/immunology , Mice , Monocytes/immunology , Monocytes/metabolism , Neoplasms/genetics , Neoplasms/pathology , Tumor Burden/immunology , Xenograft Model Antitumor Assays
17.
J Biol Chem ; 291(8): 3895-904, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26694610

ABSTRACT

Monocytes and macrophages are critical for the effectiveness of monoclonal antibody therapy. Responses to antibody-coated tumor cells are largely mediated by Fcγ receptors (FcγRs), which become activated upon binding to immune complexes. FcγRIIb is an inhibitory FcγR that negatively regulates these responses, and it is expressed on monocytes and macrophages. Therefore, deletion or down-regulation of this receptor may substantially enhance therapeutic outcomes. Here we screened a panel of Toll-like receptor (TLR) agonists and found that those selective for TLR4 and TLR8 could significantly down-regulate the expression of FcγRIIb. Upon further examination, we found that treatment of monocytes with TLR4 agonists could lead to the ubiquitination of FcγRIIb protein. A search of our earlier microarray database of monocytes activated with the TLR7/8 agonist R-848 (in which FcγRIIb was down-regulated) revealed an up-regulation of membrane-associated ring finger (C3HC4) 3 (MARCH3), an E3 ubiquitin ligase. Therefore, we tested whether LPS treatment could up-regulate MARCH3 in monocytes and whether this E3 ligase was involved with LPS-mediated FcγRIIb down-regulation. The results showed that LPS activation of TLR4 significantly increased MARCH3 expression and that siRNA against MARCH3 prevented the decrease in FcγRIIb following LPS treatment. These data suggest that activation of TLR4 on monocytes can induce a rapid down-regulation of FcγRIIb protein and that this involves ubiquitination.


Subject(s)
Carrier Proteins/metabolism , Down-Regulation/drug effects , Lipopolysaccharides/pharmacology , Membrane Proteins/metabolism , Monocytes/metabolism , Receptors, IgG/biosynthesis , Toll-Like Receptor 4/agonists , Ubiquitination/drug effects , Down-Regulation/physiology , Gene Expression Regulation, Enzymologic/drug effects , Humans , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism , Ubiquitin-Protein Ligases , Ubiquitination/physiology
18.
J Biol Chem ; 291(6): 3043-52, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26627823

ABSTRACT

The irreversible Bruton's tyrosine kinase (Btk) inhibitor ibrutinib has shown efficacy against B-cell tumors such as chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma. Fcγ receptors (FcγR) on immune cells such as macrophages play an important role in tumor-specific antibody-mediated immune responses, but many such responses involve Btk. Here we tested the effects of ibrutinib on FcγR-mediated activities in monocytes. We found that ibrutinib did not affect monocyte FcγR-mediated phagocytosis, even at concentrations higher than those achieved physiologically, but suppressed FcγR-mediated cytokine production. We confirmed these findings in macrophages from Xid mice in which Btk signaling is defective. Because calcium flux is a major event downstream of Btk, we tested whether it was involved in phagocytosis. The results showed that blocking intracellular calcium flux decreased FcγR-mediated cytokine production but not phagocytosis. To verify this, we measured activation of the GTPase Rac, which is responsible for actin polymerization. Results showed that ibrutinib did not inhibit Rac activation, nor did the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester). We next asked whether the effect of ibrutinib on monocyte FcγR-mediated cytokine production could be rescued by IFNγ priming because NK cells produce IFNγ in response to antibody therapy. Pretreatment of monocytes with IFNγ abrogated the effects of ibrutinib on FcγR-mediated cytokine production, suggesting that IFNγ priming could overcome this Btk inhibition. Furthermore, in monocyte-natural killer cell co-cultures, ibrutinib did not inhibit FcγR-mediated cytokine production despite doing so in single cultures. These results suggest that combining ibrutinib with monoclonal antibody therapy could enhance chronic lymphocytic leukemia cell killing without affecting macrophage effector function.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Macrophages/metabolism , Monocytes/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, IgG/metabolism , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Animals , Calcium Signaling/drug effects , Calcium Signaling/genetics , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Macrophages/pathology , Mice , Monocytes/pathology , Piperidines , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Receptors, IgG/genetics
19.
J Immunol ; 194(6): 2786-95, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25667415

ABSTRACT

FcγRs are critical mediators of mAb cancer therapies, because they drive cytotoxic processes upon binding of effector cells to opsonized targets. Along with NK cells, monocytes are also known to destroy Ab-coated targets via Ab-dependent cellular cytotoxicity (ADCC). However, the precise mechanisms by which monocytes carry out this function have remained elusive. In this article, we show that human monocytes produce the protease granzyme B upon both FcγR and TLR8 activation. Treatment with TLR8 agonists elicited granzyme B and also enhanced FcγR-mediated granzyme B production in an additive fashion. Furthermore, monocyte-mediated ADCC against cetuximab-coated tumor targets was enhanced by TLR8 agonist treatment, and this enhancement of ADCC required granzyme B. Hence we have identified granzyme B as an important mediator of FcγR function in human monocytes and have uncovered another mechanism by which TLR8 agonists may enhance FcγR-based therapies.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Granzymes/metabolism , Monocytes/metabolism , Toll-Like Receptor 8/metabolism , Amino Acid Chloromethyl Ketones/pharmacology , Angiotensinogen/genetics , Angiotensinogen/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents/pharmacology , Blotting, Western , Cells, Cultured , Cetuximab , Cluster Analysis , Dose-Response Relationship, Drug , Granzymes/antagonists & inhibitors , Granzymes/genetics , Humans , Imidazoles/pharmacology , Interleukin-2/genetics , Interleukin-2/metabolism , Monocytes/cytology , Monocytes/drug effects , NF-kappa B/genetics , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Perforin/genetics , Perforin/metabolism , Quinolines/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Thiazoles/pharmacology , Time Factors , Toll-Like Receptor 8/agonists , Transcriptome/drug effects
20.
J Biol Chem ; 290(10): 5960-78, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25593320

ABSTRACT

Interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK or TXK) are essential mediators of intracellular signaling in both normal and neoplastic T-cells and natural killer (NK) cells. Thus, ITK and RLK inhibitors have therapeutic potential in a number of human autoimmune, inflammatory, and malignant diseases. Here we describe a novel ITK/RLK inhibitor, PRN694, which covalently binds to cysteine residues 442 of ITK and 350 of RLK and blocks kinase activity. Molecular modeling was utilized to design molecules that interact with cysteine while binding to the ATP binding site in the kinase domain. PRN694 exhibits extended target residence time on ITK and RLK and is highly selective for a subset of the TEC kinase family. In vitro cellular assays confirm that PRN694 prevents T-cell receptor- and Fc receptor-induced cellular and molecular activation, inhibits T-cell receptor-induced T-cell proliferation, and blocks proinflammatory cytokine release as well as activation of Th17 cells. Ex vivo assays demonstrate inhibitory activity against T-cell prolymphocytic leukemia cells, and in vivo assays demonstrate durable pharmacodynamic effects on ITK, which reduces an oxazolone-induced delayed type hypersensitivity reaction. These data indicate that PRN694 is a highly selective and potent covalent inhibitor of ITK and RLK, and its extended target residence time enables durable attenuation of effector cells in vitro and in vivo. The results from this study highlight potential applications of this dual inhibitor for the treatment of T-cell- or NK cell-mediated inflammatory, autoimmune, and malignant diseases.


Subject(s)
Benzimidazoles/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Protein-Tyrosine Kinases/metabolism , T-Lymphocytes/drug effects , Adenosine Triphosphate/metabolism , Binding Sites , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Receptors, Antigen, T-Cell/drug effects , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/drug effects , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...