Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
JCI Insight ; 9(12)2024 May 21.
Article in English | MEDLINE | ID: mdl-38912586

ABSTRACT

Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.


Subject(s)
Membrane Proteins , Signal Transduction , T-Lymphocytes, Cytotoxic , Animals , Membrane Proteins/metabolism , Mice , Female , Signal Transduction/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/radiotherapy , Indomethacin/pharmacology , Indomethacin/therapeutic use , Cell Line, Tumor , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/therapeutic use , Nucleotidyltransferases/metabolism , Interferon Type I/metabolism , Cyclooxygenase 2/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Mice, Inbred BALB C
2.
Vet Pathol ; 57(6): 915-925, 2020 11.
Article in English | MEDLINE | ID: mdl-33016243

ABSTRACT

Mouse kidney parvovirus (MKPV), also known as murine chapparvovirus (MuCPV), is an emerging, highly infectious agent that has been isolated from laboratory and wild mouse populations. In immunocompromised mice, MKPV produces severe chronic interstitial nephropathy and renal failure within 4 to 5 months of infection. However, the course of disease, severity of histologic lesions, and viral shedding are uncertain for immunocompetent mice. We evaluated MKPV infections in CD-1 and Swiss Webster mice, 2 immunocompetent stocks of mice. MKPV-positive CD-1 mice (n = 30) were identified at approximately 8 weeks of age by fecal PCR (polymerase chain reaction) and were subsequently housed individually for clinical observation and diagnostic sampling. Cage swabs, fecal pellets, urine, and blood were evaluated by PCR at 100 and 128 days following the initial positive test, which identified that 28 of 30 were persistently infected and 24 of these were viremic at 100 days. Histologic lesions associated with MKPV in CD-1 (n = 31) and Swiss mice (n = 11) included lymphoplasmacytic tubulointerstitial nephritis with tubular degeneration. Inclusion bodies were rare; however, intralesional MKPV mRNA was consistently detected via in situ hybridization within tubular epithelial cells of the renal cortex and within collecting duct lumina. In immunocompetent CD-1 mice, MKPV infection resulted in persistent shedding of virus for up to 10 months and a mild tubulointerstitial nephritis, raising concerns that this virus could produce study variations in immunocompetent models. Intranuclear inclusions were not a consistent feature of MKPV infection in immunocompetent mice.


Subject(s)
Nephritis, Interstitial , Parvoviridae Infections , Parvovirinae , Rodent Diseases , Animals , Kidney , Mice , Mice, Inbred Strains , Nephritis, Interstitial/veterinary , Parvoviridae Infections/veterinary , Parvovirinae/pathogenicity
3.
Semin Oncol ; 43(4): 484-91, 2016 08.
Article in English | MEDLINE | ID: mdl-27663480

ABSTRACT

Robust pharmacodynamic assay results are valuable for informing go/no-go decisions about continued development of new anti-cancer agents and for identifying combinations of targeted agents, but often pharmacodynamic results are too incomplete or variable to fulfill this role. Our experience suggests that variable reagent and specimen quality are two major contributors to this problem. Minimizing all potential sources of variability in procedures for specimen collection, processing, and assay measurements is essential for meaningful comparison of pharmacodynamic biomarkers across sample time points. This is especially true in the evaluation of pre- and post-dose tumor biopsies, which suffer from high levels of tumor insufficiency due to variations in biopsy collection techniques and significant specimen heterogeneity within and across patients. Developing methods to assess heterogeneous biopsies is necessary in order to evaluate a majority of tumor biopsies collected for pharmacodynamic biomarker studies. Improved collection devices and standardization of methods are being sought in order to improve the tumor content and quality of tumor biopsies. In terms of reagent variability, we have found that stringent initial reagent qualification and quality control of R&D-grade reagents is critical to minimize lot-to-lot variability and prevent assay failures, especially for clinical pharmacodynamic questions, which often demand assay performance that meets or exceeds clinical diagnostic assay standards. Rigorous reagent specifications and use of appropriate assay quality control methodologies help to ensure consistency between assay runs, laboratories and trials to provide much needed pharmacodynamic insights into the activity of investigational agents.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Biomarkers, Tumor/analysis , Specimen Handling/methods , Biopsy , Humans , Indicators and Reagents , Neoplasms/pathology , Reproducibility of Results , Specimen Handling/standards
4.
Proc Natl Acad Sci U S A ; 110(33): 13534-9, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23904478

ABSTRACT

Increased serum levels of IL-15 are reported in type 1 diabetes (T1D). Here we report elevated serum soluble IL-15Rα levels in human T1D. To investigate the role of IL-15/IL-15Rα in the pathogenesis of T1D, we generated double transgenic mice with pancreatic ß-cell expression of IL-15 and IL-15Rα. The mice developed hyperglycemia, marked mononuclear cell infiltration, ß-cell destruction, and anti-insulin autoantibodies that mimic early human T1D. The diabetes in this model was reversed by inhibiting IL-15 signaling with anti-IL2/IL15Rß (anti-CD122), which blocks IL-15 transpresentation. Furthermore, the diabetes could be reversed by administration of the Janus kinase 2/3 inhibitor tofacitinib, which blocks IL-15 signaling. In an alternative diabetes model, nonobese diabetic mice, IL15/IL-15Rα expression was increased in islet cells in the prediabetic stage, and inhibition of IL-15 signaling with anti-CD122 at the prediabetic stage delayed diabetes development. In support of the view that these observations reflect the conditions in humans, we demonstrated pancreatic islet expression of both IL-15 and IL-15Rα in human T1D. Taken together our data suggest that disordered IL-15 and IL-15Rα may be involved in T1D pathogenesis and the IL-15/IL15Rα system and its signaling pathway may be rational therapeutic targets for early T1D.


Subject(s)
Diabetes Mellitus, Type 1/etiology , Disease Models, Animal , Insulin-Secreting Cells/metabolism , Interleukin-15 Receptor alpha Subunit/metabolism , Interleukin-15/metabolism , Signal Transduction/drug effects , Animals , Humans , Interleukin-15/antagonists & inhibitors , Interleukin-15/blood , Interleukin-15 Receptor alpha Subunit/blood , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology
5.
PLoS One ; 7(12): e52655, 2012.
Article in English | MEDLINE | ID: mdl-23285131

ABSTRACT

BACKGROUND: Despite high cure rates for pediatric B-lineage acute lymphoblastic leukemia (B-ALL), short-term and long-term toxicities and chemoresistance are shortcomings of standard chemotherapy. Immunotherapy and chemoimmunotherapy based on monoclonal antibodies (mAbs) that target cell surface antigens with restricted expression in pediatric B-ALL may offer the potential to reduce toxicities and prevent or overcome chemoresistance. The receptor tyrosine kinase ROR1 has emerged as a candidate for mAb targeting in select B-cell malignancies. METHODOLOGY AND PRINCIPAL FINDINGS: Using flow cytometry, Western blotting, immunohistochemistry, and confocal immunofluorescence microscopy, we analyzed the cell surface expression of ROR1 across major pediatric ALL subtypes represented by 14 cell lines and 56 primary blasts at diagnosis or relapse as well as in normal adult and pediatric tissues. Cell surface ROR1 expression was found in 45% of pediatric ALL patients, all of which were B-ALL, and was not limited to any particular genotype. All cell lines and primary blasts with E2A-PBX1 translocation and a portion of patients with other high risk genotypes, such as MLL rearrangement, expressed cell surface ROR1. Importantly, cell surface ROR1 expression was found in many of the pediatric B-ALL patients with multiply relapsed and refractory disease and normal karyotype or low risk cytogenetics, such as hyperdiploidy. Notably, cell surface ROR1 was virtually absent in normal adult and pediatric tissues. CONCLUSIONS AND SIGNIFICANCE: Collectively, this study suggests that ROR1 merits preclinical and clinical investigations as a novel target for mAb-based therapies in pediatric B-ALL. We propose cell surface expression of ROR1 detected by flow cytometry as primary inclusion criterion for pediatric B-ALL patients in future clinical trials of ROR1-targeted therapies.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Adolescent , Adult , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Child , Child, Preschool , Female , Gene Expression , Gene Expression Profiling , Humans , Immunophenotyping , Infant , Male , Molecular Targeted Therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/antagonists & inhibitors , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Young Adult
6.
J Pediatr Hematol Oncol ; 33(5): 360-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21552147

ABSTRACT

In vitro growth of alveolar soft part sarcoma (ASPS) and establishment of an ASPS cell line, ASPS-1, are described in this study. Using a recently developed xenograft model of ASPS derived from a lymph node metastasis, organoid nests consisting of 15 to 25 ASPS cells were isolated from ASPS xenograft tumors by capture on 70 µm filters and plated in vitro. After attachment to the substratum, these nests deposited small aggregates of ASPS cells. These cells grew slowly and were expanded over a period of 3 years and have maintained characteristics consistent with those of both the original ASPS tumor from the patient and the xenograft tumor including (1) presence of the alveolar soft part locus-transcription factor E3 type 1 fusion transcript and nuclear expression of the alveolar soft part locus-transcription factor E3 type 1 fusion protein; (2) maintenance of the t(X;17)(p11;q25) translocation characteristic of ASPS; and (3) expression of upregulated ASPS transcripts involved in angiogenesis (ANGPTL2, HIF-1-α, MDK, c-MET, VEGF, and TIMP-2), cell proliferation (PRL, PCSK1), metastasis (ADAM9), as well as the transcription factor BHLHB3 and the muscle-specific transcripts TRIM63 and ITGß1BP3. This ASPS cell line forms colonies in soft agar and retains the ability to produce highly vascularized ASPS tumors in NOD.SCID/NCr mice. Immunohistochemistry of selected ASPS markers on these tumors indicated similarity to those of the original patient tumor as well as to the xenografted ASPS tumor. We anticipate that this ASPS cell line will accelerate investigations into the biology of ASPS including identification of new therapeutic approaches for treatment of this slow growing soft tissue sarcoma.


Subject(s)
Lymph Nodes/pathology , Sarcoma, Alveolar Soft Part/genetics , Sarcoma, Alveolar Soft Part/secondary , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Adult , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carcinogenicity Tests , Cell Division/physiology , Cell Line, Tumor , Female , Gene Expression Profiling , Humans , In Vitro Techniques , Intracellular Signaling Peptides and Proteins , Lymphatic Metastasis , Male , Mice , Mice, Inbred NOD , Mice, SCID , Oncogene Proteins, Fusion/genetics , Translocation, Genetic , Transplantation, Heterologous
7.
Int J Cancer ; 126(2): 459-68, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19585575

ABSTRACT

Cancer cells undergo significant changes in carbohydrate expression, and these alterations can be useful as biomarkers and therapeutic targets. In this study, we investigated the expression of carbohydrate antigens containing a terminal GalNAcalpha1-3Gal or GalNAcalpha1-6Gal on human cervix and cervical carcinoma. Monoclonal antibodies to each of these carbohydrates were generated by immunizing rabbits with the corresponding antigen conjugated to KLH followed by hybridoma production. Antibodies were screened and evaluated using a combination of carbohydrate microarray profiling, ELISA, dot blot and immunohistochemical staining to verify specificity. Antibody 132-3 was found to selectively recognize GalNAcalpha1-3Gal with little cross-reactivity to other structurally similar antigens such as GalNAcalpha1-6Gal, blood group A, Forssman antigen and the Tn antigen on both solution assays and human tissue. Although GalNAcalpha1-6Gal expression was not detected, GalNAcalpha1-3Gal expression was found on 55% of squamous cell carcinomas. Expression in normal tissue was observed but was restricted to the suprabasal epithelial layer. Importantly, we found expression of the antigen on cervical cancer had a statistically significant correlation with the 5-year survival rate of the patients (48 vs. 85% for antigen negative vs. positive, p = 0.017). Expression of GalNAcalpha1-3Gal did not correlate with other clinical factors including tumor stage, size and lymph node metastasis, indicating the antigen is a new, independent biomarker for the prognosis of cervical cancer.


Subject(s)
Biomarkers, Tumor/analysis , Disaccharides/analysis , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/metabolism , Adult , Antibodies, Monoclonal/immunology , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/metabolism , Cervix Uteri/chemistry , Cervix Uteri/pathology , Chi-Square Distribution , Disaccharides/chemistry , Disaccharides/immunology , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Lymphatic Metastasis , Middle Aged , Molecular Structure , Prognosis , Reproducibility of Results , Sensitivity and Specificity
8.
J Pediatr Hematol Oncol ; 31(8): 561-70, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19636271

ABSTRACT

In vivo growth of alveolar soft part sarcoma (ASPS) was achieved using subcutaneous xenografts in sex-matched nonobese diabetic severe combined immunodeficiency mice. One tumor, currently at passage 6, has been maintained in vivo for 32 months and has maintained characteristics consistent with those of the original ASPS tumor including (1) tumor histology and staining with periodic acid Schiff/diastase, (2) the presence of the ASPL-TFE3 type 1 fusion transcript, (3) nuclear staining with antibodies to the ASPL-TFE3 type 1 fusion protein, (4) maintenance of the t(X;17)(p11;q25) translocation characteristic of ASPS, (5) stable expression of signature ASPS gene transcripts and finally, the development and maintenance of a functional vascular network, a hallmark of ASPS. The ASPS xenograft tumor vasculature encompassing nests of ASPS cells is highly reactive to antibodies against the endothelial antigen CD34 and is readily accessible to intravenously administered fluorescein isothiocyanate-dextran. The therapeutic vulnerability of this tumor model to antiangiogenic therapy, targeting vascular endothelial growth factor and hypoxia-inducible factor-1 alpha, was examined using bevacizumab and topotecan alone and in combination. Together, the 2 drugs produced a 70% growth delay accompanied by a 0.7 net log cell kill that was superior to the antitumor effect produced by either drug alone. In summary, this study describes a preclinical in vivo model for ASPS which will facilitate investigation into the biology of this slow growing soft tissue sarcoma and demonstrates the feasibility of using an antiangiogenic approach in the treatment of ASPS.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Neovascularization, Pathologic/drug therapy , Sarcoma/drug therapy , Topotecan/pharmacology , Xenograft Model Antitumor Assays , Animals , Antibodies, Monoclonal, Humanized , Antigens, CD34 , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Bevacizumab , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 17/metabolism , Chromosomes, Human, X/genetics , Chromosomes, Human, X/metabolism , Disease Models, Animal , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Sarcoma/genetics , Sarcoma/metabolism , Sarcoma/pathology , Translocation, Genetic/genetics , Transplantation, Heterologous , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
9.
Mol Cancer Ther ; 8(4): 971-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19372570

ABSTRACT

The tumor-associated Tn antigen has been investigated extensively as a biomarker and therapeutic target. Cancer vaccines containing the Tn antigen as a single tumor antigen or as a component of a polyvalent vaccine have progressed into phase I and II clinical trials. One major focus of Tn-based vaccines is the treatment of prostate cancer patients. Although expression of the antigen on prostate tumors is a critical prerequisite, previous reports investigating Tn expression in prostate tumors have produced conflicting results. Using a combination of immunohistochemistry and carbohydrate microarray profiling, we show that only 4% to 26% of prostate tumors express the Tn antigen. Based on our results, the majority of prostate cancer patients do not express the appropriate antigen. Therefore, efforts to preselect the subset of prostate cancer patients with Tn-positive tumors or apply Tn vaccines to other cancers with higher rates of antigen expression could significantly improve clinical response rates. Because conflicting information on carbohydrate expression is a general problem for the field, the approach described in this article of analyzing antigen expression with multiple antibodies and using carbohydrate microarray profiles to interpret the results will be useful for the development of other carbohydrate-based cancer vaccines and diagnostics.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/metabolism , Biomarkers, Tumor/metabolism , Cancer Vaccines/therapeutic use , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Adenocarcinoma/therapy , Aged , Animals , Antigens, Tumor-Associated, Carbohydrate/immunology , Biomarkers, Tumor/immunology , Carbohydrates/immunology , Carcinoma, Transitional Cell/immunology , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/therapy , Clinical Trials as Topic , Humans , Hyperplasia/immunology , Hyperplasia/metabolism , Hyperplasia/therapy , Male , Prostatic Neoplasms/metabolism , Rabbits
10.
BMC Cancer ; 9: 22, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19146682

ABSTRACT

BACKGROUND: Alveolar soft-part sarcoma (ASPS) is an extremely rare, highly vascular soft tissue sarcoma affecting predominantly adolescents and young adults. In an attempt to gain insight into the pathobiology of this enigmatic tumor, we performed the first genome-wide gene expression profiling study. METHODS: For seven patients with confirmed primary or metastatic ASPS, RNA samples were isolated immediately following surgery, reverse transcribed to cDNA and each sample hybridized to duplicate high-density human U133 plus 2.0 microarrays. Array data was then analyzed relative to arrays hybridized to universal RNA to generate an unbiased transcriptome. Subsequent gene ontology analysis was used to identify transcripts with therapeutic or diagnostic potential. A subset of the most interesting genes was then validated using quantitative RT-PCR and immunohistochemistry. RESULTS: Analysis of patient array data versus universal RNA identified elevated expression of transcripts related to angiogenesis (ANGPTL2, HIF-1 alpha, MDK, c-MET, VEGF, TIMP-2), cell proliferation (PRL, IGFBP1, NTSR2, PCSK1), metastasis (ADAM9, ECM1, POSTN) and steroid biosynthesis (CYP17A1 and STS). A number of muscle-restricted transcripts (ITGB1BP3/MIBP, MYF5, MYF6 and TRIM63) were also identified, strengthening the case for a muscle cell progenitor as the origin of disease. Transcript differentials were validated using real-time PCR and subsequent immunohistochemical analysis confirmed protein expression for several of the most interesting changes (MDK, c-MET, VEGF, POSTN, CYP17A1, ITGB1BP3/MIBP and TRIM63). CONCLUSION: Results from this first comprehensive study of ASPS gene expression identifies several targets involved in angiogenesis, metastasis and myogenic differentiation. These efforts represent the first step towards defining the cellular origin, pathogenesis and effective treatment strategies for this atypical malignancy.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Sarcoma, Alveolar Soft Part/genetics , Adolescent , Adult , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Male , Oligonucleotide Array Sequence Analysis , Sarcoma, Alveolar Soft Part/secondary , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL