Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Mov Ecol ; 12(1): 31, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654348

ABSTRACT

BACKGROUND: Acoustic telemetry has become a fundamental tool to monitor the movement of aquatic species. Advances in technology, in particular the development of batteries with lives of > 10 years, have increased our ability to track the long-term movement patterns of many species. However, logistics and financial constraints often dictate the locations and deployment duration of acoustic receivers. Consequently, there is often a compromise between optimal array design and affordability. Such constraints can hinder the ability to track marine animals over large spatial and temporal scales. Continental-scale receiver networks have increased the ability to study large-scale movements, but significant gaps in coverage often remain. METHODS: Since 2007, the Integrated Marine Observing System's Animal Tracking Facility (IMOS ATF) has maintained permanent receiver installations on the eastern Australian seaboard. In this study, we present the recent enhancement of the IMOS ATF acoustic tracking infrastructure in Queensland to collect data on large-scale movements of marine species in the northeast extent of the national array. Securing a relatively small initial investment for expanding receiver deployment and tagging activities in Queensland served as a catalyst, bringing together a diverse group of stakeholders (research institutes, universities, government departments, port corporations, industries, Indigenous ranger groups and tourism operators) to create an extensive collaborative network that could sustain the extended receiver coverage into the future. To fill gaps between existing installations and maximise the monitoring footprint, the new initiative has an atypical design, deploying many single receivers spread across 2,100 km of Queensland waters. RESULTS: The approach revealed previously unknown broad-scale movements for some species and highlights that clusters of receivers are not always required to enhance data collection. However, array designs using predominantly single receiver deployments are more vulnerable to data gaps when receivers are lost or fail, and therefore "redundancy" is a critical consideration when designing this type of array. CONCLUSION: Initial results suggest that our array enhancement, if sustained over many years, will uncover a range of previously unknown movements that will assist in addressing ecological, fisheries, and conservation questions for multiple species.

2.
Mar Pollut Bull ; 198: 115855, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043202

ABSTRACT

Shark-human interactions are some of the most pervasive human-wildlife conflicts, and their frequencies are increasing globally. New South Wales (Australia) was the first to implement a broad-scale program of shark-bite mitigation in 1937 using shark nets, which expanded in the late 2010s to include non-lethal measures. Using 196 unprovoked shark-human interactions recorded in New South Wales since 1900, we show that bites shifted from being predominantly on swimmers to 79 % on surfers by the 1980s and increased 2-4-fold. We could not detect differences in the interaction rate at netted versus non-netted beaches since the 2000s, partly because of low incidence and high variance. Although shark-human interactions continued to occur at beaches with tagged-shark listening stations, there were no interactions while SMART drumlines and/or drones were deployed. Our effect-size analyses show that a small increase in the difference between mitigated and non-mitigated beaches could indicate reductions in shark-human interactions. Area-based protection alone is insufficient to reduce shark-human interactions, so we propose a new, globally transferable approach to minimise risk of shark bite more effectively.


Subject(s)
Bites and Stings , Sharks , Animals , Humans , Incidence , Australia , Bites and Stings/epidemiology , Animals, Wild
3.
Sensors (Basel) ; 23(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005577

ABSTRACT

Monitoring marine fauna is essential for mitigating the effects of disturbances in the marine environment, as well as reducing the risk of negative interactions between humans and marine life. Drone-based aerial surveys have become popular for detecting and estimating the abundance of large marine fauna. However, sightability errors, which affect detection reliability, are still apparent. This study tested the utility of spectral filtering for improving the reliability of marine fauna detections from drone-based monitoring. A series of drone-based survey flights were conducted using three identical RGB (red-green-blue channel) cameras with treatments: (i) control (RGB), (ii) spectrally filtered with a narrow 'green' bandpass filter (transmission between 525 and 550 nm), and, (iii) spectrally filtered with a polarising filter. Video data from nine flights comprising dolphin groups were analysed using a machine learning approach, whereby ground-truth detections were manually created and compared to AI-generated detections. The results showed that spectral filtering decreased the reliability of detecting submerged fauna compared to standard unfiltered RGB cameras. Although the majority of visible contrast between a submerged marine animal and surrounding seawater (in our study, sites along coastal beaches in eastern Australia) is known to occur between 515-554 nm, isolating the colour input to an RGB sensor does not improve detection reliability due to a decrease in the signal to noise ratio, which affects the reliability of detections.


Subject(s)
Seawater , Unmanned Aerial Devices , Animals , Humans , Reproducibility of Results , Australia
4.
Biology (Basel) ; 12(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37887039

ABSTRACT

Human-shark conflict has been managed through catch-and-kill policies in most parts of the world. More recently, there has been a greater demand for shark bite mitigation measures to improve protection for water users whilst minimizing harm to non-target and target species, particularly White Sharks (Carcharodon carcharias), given their status as a Threatened, Endangered, or Protected (TEP) species. A new non-lethal shark bite mitigation method, known as the Shark-Management-Alert-in-Real-Time (SMART) drumline, alerts responders when an animal takes the bait and thereby provides an opportunity for rapid response to the catch and potentially to relocate, tag, and release sharks. Thirty-six White Sharks were caught on SMART drumlines in New South Wales, Australia, and tagged with dorsal fin-mounted satellite-linked radio transmitters (SLRTs) and acoustic tags before release. Thirty-one sharks were located within 10 days, 22 of which provided high-quality locations (classes 1 to 3) suitable for analysis. Twenty-seven percent and 59% of these sharks were first detected within 10 and 50 h of release, respectively. For the first three days post-release, sharks moved and mostly remained offshore (>3.5 km from the coast), irrespective of shark sex and length. Thereafter, tagged sharks progressively moved inshore; however, 77% remained more than 1.9 km off the coast and an average of 5 km away from the tagging location, 10 days post-release. Sharks were acoustically detected for an average of 591 days post-release (ranging from 45 to 1075 days). Although five of the 36 sharks were not detected on acoustic receivers, SLRT detections for these five sharks ranged between 43 and 639 days post-release, indicating zero mortality associated with capture. These results highlight the suitability of SMART drumlines as a potential non-lethal shark bite mitigation tool for TEP species such as White Sharks, as they initially move away from the capture site, and thereby this bather protection tool diminishes the immediate risk of shark interactions at that site.

5.
Biology (Basel) ; 12(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37759589

ABSTRACT

Unprovoked shark bites have increased over the last three decades, yet they are still relatively rare. Bull sharks are globally distributed throughout rivers, estuaries, nearshore areas and continental shelf waters, and are capable of making long distance movements between tropical and temperate regions. As this species is implicated in shark bites throughout their range, knowledge of the environmental drivers of bull shark movements are important for better predicting the likelihood of their occurrence at ocean beaches and potentially assist in reducing shark bites. Using the largest dataset of acoustically tagged bull sharks in the world, we examined the spatial ecology of 233 juvenile and large (including sub-adult and adult) bull sharks acoustically tagged and monitored over a 5.5-year period (2017-2023) using an array of real-time acoustic listening stations off 21 beaches along the coast of New South Wales, Australia. Bull sharks were detected more in coastal areas of northern NSW (<32° S) but they travelled southwards during the austral summer and autumn. Juveniles were not detected on shark listening stations until they reached 157 cm and stayed north of 31.98° S (Old Bar). Intra-specific diel patterns of occurrence were observed, with juveniles exhibiting higher nearshore presence between 20:00 and 03:00, whilst the presence of large sharks was greatest from midday through to 04:00. The results of generalised additive models revealed that large sharks were more often found when water temperatures were higher than 20 °C, after >45 mm of rain and when swell heights were between 1.8 and 2.8 m. Understanding the influence that environmental variables have on the occurrence of bull sharks in the coastal areas of NSW will facilitate better education and could drive shark smart behaviour amongst coastal water users.

6.
Am Nat ; 201(4): 586-602, 2023 04.
Article in English | MEDLINE | ID: mdl-36958006

ABSTRACT

AbstractUnifying models have shown that the amount of space used by animals (e.g., activity space, home range) scales allometrically with body mass for terrestrial taxa; however, such relationships are far less clear for marine species. We compiled movement data from 1,596 individuals across 79 taxa collected using a continental passive acoustic telemetry network of acoustic receivers to assess allometric scaling of activity space. We found that ectothermic marine taxa do exhibit allometric scaling for activity space, with an overall scaling exponent of 0.64. However, body mass alone explained only 35% of the variation, with the remaining variation best explained by trophic position for teleosts and latitude for sharks, rays, and marine reptiles. Taxon-specific allometric relationships highlighted weaker scaling exponents among teleost fish species (0.07) than sharks (0.96), rays (0.55), and marine reptiles (0.57). The allometric scaling relationship and scaling exponents for the marine taxonomic groups examined were lower than those reported from studies that had collated both marine and terrestrial species data derived using various tracking methods. We propose that these disparities arise because previous work integrated summarized data across many studies that used differing methods for collecting and quantifying activity space, introducing considerable uncertainty into slope estimates. Our findings highlight the benefit of using large-scale, coordinated animal biotelemetry networks to address cross-taxa evolutionary and ecological questions.


Subject(s)
Aquatic Organisms , Fishes , Animals , Homing Behavior
7.
Biology (Basel) ; 11(12)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36552199

ABSTRACT

Knowledge of the 3-dimensional space use of large marine predators is central to our understanding of ecosystem dynamics and for the development of management recommendations. Horizontal movements of white sharks, Carcharodon carcharias, in eastern Australian and New Zealand waters have been relatively well studied, yet vertical habitat use is less well understood. We dual-tagged 27 immature white sharks with Pop-Up Satellite Archival Transmitting (PSAT) and acoustic tags in New South Wales coastal shelf waters. In addition, 19 of these individuals were also fitted with Smart Position or Temperature Transmitting (SPOT) tags. PSATs of 12 sharks provided useable data; four tags were recovered, providing highly detailed archival data recorded at 3-s intervals. Horizontal movements ranged from southern Queensland to southern Tasmania and New Zealand. Sharks made extensive use of the water column (0-632 m) and experienced a broad range of temperatures (7.8-28.9 °C). Archival records revealed pronounced diel-patterns in distinct fine-scale oscillatory behaviour, with sharks occupying relatively constant depths during the day and exhibiting pronounced yo-yo diving behaviour (vertical zig-zag swimming through the water column) during the night. Our findings provide valuable new insights into the 3-dimensional space use of Eastern Australasian (EA) white sharks and contribute to the growing body on the general ecology of immature white sharks.

9.
Biology (Basel) ; 11(11)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36358255

ABSTRACT

Drones enable the monitoring for sharks in real-time, enhancing the safety of ocean users with minimal impact on marine life. Yet, the effectiveness of drones for detecting sharks (especially potentially dangerous sharks; i.e., white shark, tiger shark, bull shark) has not yet been tested at Queensland beaches. To determine effectiveness, it is necessary to understand how environmental and operational factors affect the ability of drones to detect sharks. To assess this, we utilised data from the Queensland SharkSmart drone trial, which operated at five southeast Queensland beaches for 12 months in 2020−2021. The trial conducted 3369 flights, covering 1348 km and sighting 174 sharks (48 of which were >2 m in length). Of these, eight bull sharks and one white shark were detected, leading to four beach evacuations. The shark sighting rate was 3% when averaged across all beaches, with North Stradbroke Island (NSI) having the highest sighting rate (17.9%) and Coolum North the lowest (0%). Drone pilots were able to differentiate between key shark species, including white, bull and whaler sharks, and estimate total length of the sharks. Statistical analysis indicated that location, the sighting of other fauna, season and flight number (proxy for time of day) influenced the probability of sighting sharks.

10.
Biology (Basel) ; 11(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36290347

ABSTRACT

In eastern Australia, white sharks (Carcharodon carcharias) are targeted in shark control programs, yet the movement of subadults and adults of the eastern Australasian population is poorly understood. To investigate horizontal and vertical movement and habitat use in this region, MiniPAT pop-up satellite archival tags were deployed on three larger white sharks (340−388 cm total length) between May 2021 and January 2022. All sharks moved away from the coast after release and displayed a preference for offshore habitats. The upper < 50 m of the water column and temperatures between 14−19 °C were favoured, with a diel pattern of vertical habitat use evident as deeper depths were occupied during the day and shallower depths at night. Horizontal movement consisted of north−south seasonality interspersed with periods of residency. Very little information is available for adult white sharks in eastern Australia and studies like this provide key baseline information for their life history. Importantly, the latitudinal range achieved by white sharks illuminate the necessity for multijurisdictional management to effectively mitigate human-shark interactions whilst supporting conservation efforts of the species.

11.
Biology (Basel) ; 11(10)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36290360

ABSTRACT

There is still limited information about the diversity, distribution, and abundance of sharks in and around the surf zones of ocean beaches. We used long-term and large-scale drone surveying techniques to test hypotheses about the relative abundance and occurrence of sharks off ocean beaches of New South Wales, Australia. We quantified sharks in 36,384 drone flights across 42 ocean beaches from 2017 to 2021. Overall, there were 347 chondrichthyans recorded, comprising 281 (81.0%) sharks, with observations occurring in <1% of flights. Whaler sharks (Carcharhinus spp.) had the highest number of observations (n = 158) recorded. There were 34 individuals observed for both white sharks (Carcharodon carcharias) and critically endangered greynurse sharks (Carcharias taurus). Bull sharks (Carcharhinus leucas), leopard sharks (Stegostoma tigrinum) and hammerhead species (Sphyrna spp.) recorded 29, eight and three individuals, respectively. Generalised additive models were used to identify environmental drivers for detection probability of white, bull, greynurse, and whaler sharks. Distances to the nearest estuary, headland, and island, as well as water temperature and wave height, were significant predictors of shark occurrence; however, this varied among species. Overall, we provide valuable information for evidence-based species-specific conservation and management strategies for coastal sharks.

12.
Sci Rep ; 12(1): 14121, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986014

ABSTRACT

The perceived and real threat of shark bites have significant direct health and indirect economic impacts. Here we assess the changing odds of surviving an unprovoked shark bite using 200 years of Australian records. Bite survivability rates for bull (Carcharhinus leucas), tiger (Galeocerdo cuvier) and white (Carcharodon carcharias) sharks were assessed relative to environmental and anthropogenic factors. Survivability of unprovoked bull, tiger and white shark bites were 62, 75 and 53% respectively. Bull shark survivability increased over time between 1807 and 2018. Survivability decreased for both tiger and white sharks when the person was doing an in water activity, such as swimming or diving. Not unsurprisingly, a watercraft for protection/floatation increased survivability to 92% from 30%, and 88% from 45%, for tiger and white sharks respectively. We speculate that survival may be related to time between injury and treatment, indicating the importance of rapid and appropriate medical care. Understanding the predictors of unprovoked bites, as well as survivability (year and water activity), may be useful for developing strategies that reduce the number of serious or fatal human-shark interactions without impacting sharks and other marine wildlife.


Subject(s)
Bites and Stings , Sharks , Animals , Australia , Humans , Water
13.
Sci Adv ; 8(33): eabo1754, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35984887

ABSTRACT

Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.

14.
J Hazard Mater ; 425: 127956, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34986563

ABSTRACT

Large marine predators exhibit high concentrations of mercury (Hg) as neurotoxic methylmercury, and the potential impacts of global change on Hg contamination in these species remain highly debated. Current contaminant model predictions do not account for intraspecific variability in Hg exposure and may fail to reflect the diversity of future Hg levels among conspecific populations or individuals, especially for top predators displaying a wide range of ecological traits. Here, we used Hg isotopic compositions to show that Hg exposure sources varied significantly between and within three populations of white sharks (Carcharodon carcharias) with contrasting ecology: the north-eastern Pacific, eastern Australasian, and south-western Australasian populations. Through Δ200Hg signatures in shark tissues, we found that atmospheric Hg deposition pathways to the marine environment differed between coastal and offshore habitats. Discrepancies in δ202Hg and Δ199Hg signatures among white sharks provided evidence for intraspecific exposure to distinct sources of marine methylmercury, attributed to population and ontogenetic shifts in foraging habitat and prey composition. We finally observed a strong divergence in Hg accumulation rates between populations, leading to three times higher Hg concentrations in large Australasian sharks compared to north-eastern Pacific sharks, and likely due to different trophic strategies adopted by adult sharks across populations. This study illustrates the variety of Hg exposure sources and bioaccumulation patterns that can be found within a single species and suggests that intraspecific variability needs to be considered when assessing future trajectories of Hg levels in marine predators.


Subject(s)
Mercury , Sharks , Animals , Bioaccumulation , Ecosystem , Fishes , Food Chain , Humans , Seafood
15.
Oecologia ; 198(1): 111-124, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34787703

ABSTRACT

Globally, marine animal distributions are shifting in response to a changing climate. These shifts are usually considered at the species level, but individuals are likely to differ in how they respond to the changing conditions. Here, we investigate how movement behaviour and, therefore, redistribution, would differ by sex and maturation class in a wide-ranging marine predator. We tracked 115 tiger sharks (Galeocerdo cuvier) from 2002 to 2020 and forecast class-specific distributions through to 2030, including environmental factors and predicted occurrence of potential prey. Generalised Linear and Additive Models revealed that water temperature change, particularly at higher latitudes, was the factor most associated with shark movements. Females dispersed southwards during periods of warming temperatures, and while juvenile females preferred a narrow thermal range between 22 and 23 °C, adult female and juvenile male presence was correlated with either lower (< 22 °C) or higher (> 23 °C) temperatures. During La Niña, sharks moved towards higher latitudes and used shallower isobaths. Inclusion of predicted distribution of their putative prey significantly improved projections of suitable habitats for all shark classes, compared to simpler models using temperature alone. Tiger shark range off the east coast of Australia is predicted to extend ~ 3.5° south towards the east coast of Tasmania, particularly for juvenile males. Our framework highlights the importance of combining long-term movement data with multi-factor habitat projections to identify heterogeneity within species when predicting consequences of climate change. Recognising intraspecific variability will improve conservation and management strategies and help anticipate broader ecosystem consequences of species redistribution due to ocean warming.


Subject(s)
Climate Change , Sharks , Animal Distribution , Animals , Ecosystem , Female , Humans , Male , Temperature
17.
Biol Conserv ; 256: 108995, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34580542

ABSTRACT

COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.

18.
Ecol Evol ; 11(1): 186-198, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437422

ABSTRACT

Population size is a central parameter for conservation; however, monitoring abundance is often problematic for threatened marine species. Despite substantial investment in research, many marine species remain data-poor presenting barriers to the evaluation of conservation management outcomes and the modeling of future solutions. Such is the case for the white shark (Carcharodon carcharias), a highly mobile apex predator for whom recent and substantial population declines have been recorded in many globally distributed populations. Here, we estimate the effective number of breeders that successfully contribute offspring in one reproductive cycle (Nb) to provide a snapshot of recent reproductive effort in an east Australian-New Zealand population of white shark. Nb was estimated over four consecutive age cohorts (2010, 2011, 2012, and 2013) using two genetic estimators (linkage disequilibrium; LD and sibship assignment; SA) based on genetic data derived from two types of genetic markers (single nucleotide polymorphisms; SNPs and microsatellite loci). While estimates of Nb using different marker types produced comparable estimates, microsatellite loci were the least precise. The LD and SA estimates of Nb within cohorts using SNPs were comparable; for example, the 2013 age cohort Nb(SA) was 289 (95% CI 200-461) and Nb(LD) was 208.5 (95% CI 116.4-712.7). We show that over the time period studied, Nb was stable and ranged between 206.1 (SD ± 45.9) and 252.0 (SD ± 46.7) per year using a combined estimate of Nb(LD+SA) from SNP loci. In addition, a simulation approach showed that in this population the effective population size (Ne) per generation can be expected to be larger than Nb per reproductive cycle. This study demonstrates how breeding population size can be monitored over time to provide insight into the effectiveness of recovery and conservation measures for the white shark, where the methods described here may be applicable to other data-poor species of conservation concern.

19.
Sci Rep ; 10(1): 10169, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576876

ABSTRACT

In Australian and New Zealand waters, current knowledge on white shark (Carcharodon carcharias) movement ecology is based on individual tracking studies using relatively small numbers of tags. These studies describe a species that occupies highly variable and complex habitats. However, uncertainty remains as to whether the proposed movement patterns are representative of the wider population. Here, we tagged 103 immature Australasian white sharks (147-350 cm fork length) with both acoustic and satellite transmitters to expand our current knowledge of population linkages, spatiotemporal dynamics and coastal habitats. Eighty-three sharks provided useable data. Based on individual tracking periods of up to 5 years and a total of 2,865 days of tracking data, we were able to characterise complex movement patterns over ~45° of latitude and ~72° of longitude and distinguish regular/recurrent patterns from occasional/exceptional migration events. Shark movements ranged from Papua New Guinea to sub-Antarctic waters and to Western Australia, highlighting connectivity across their entire Australasian range. Results over the 12-year study period yielded a comprehensive characterisation of the movement ecology of immature Australasian white sharks across multiple spatial scales and substantially expanded the body of knowledge available for population assessment and management.


Subject(s)
Animal Migration , Sharks/physiology , Animals , Australia , Ecology , Ecosystem , New Zealand , Population Dynamics
20.
J Fish Biol ; 96(2): 427-433, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31769026

ABSTRACT

Here, we provide baseline information about the relative abundance and group size of the Australian cownose ray Rhinoptera neglecta on the central east coast of Australia. Using drone monitoring over 2 years, we completed 293 transects, each 2 km in length, at four locations distributed along c.100 km of coast. In total, 5979 R. neglecta were observed with overall relative abundance (±SE) of, 20.4 (±3.3) individuals per transect. The numbers of R. neglecta varied among locations, with the highest density found off the beach adjacent to the river mouth at Evans Head. The number of rays observed also decreased with increasing wind speed. While some of this relationship was probably associated with visibility, R. neglecta may also move offshore during strong winds. We found no evidence that R. neglecta was under significant threat. Additionally, our cost-effective surveys demonstrate the utility of aerial drones in fisheries conservation biology.


Subject(s)
Animal Distribution , Skates, Fish/physiology , Animals , Australia , Fisheries/trends , Pacific Ocean , Population Density , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...