Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1095191, 2023.
Article in English | MEDLINE | ID: mdl-37065130

ABSTRACT

Sulfate-reducing bacteria (SRB) are obligate anaerobes that can couple their growth to the reduction of sulfate. Despite the importance of SRB to global nutrient cycles and their damage to the petroleum industry, our molecular understanding of their physiology remains limited. To systematically provide new insights into SRB biology, we generated a randomly barcoded transposon mutant library in the model SRB Desulfovibrio vulgaris Hildenborough (DvH) and used this genome-wide resource to assay the importance of its genes under a range of metabolic and stress conditions. In addition to defining the essential gene set of DvH, we identified a conditional phenotype for 1,137 non-essential genes. Through examination of these conditional phenotypes, we were able to make a number of novel insights into our molecular understanding of DvH, including how this bacterium synthesizes vitamins. For example, we identified DVU0867 as an atypical L-aspartate decarboxylase required for the synthesis of pantothenic acid, provided the first experimental evidence that biotin synthesis in DvH occurs via a specialized acyl carrier protein and without methyl esters, and demonstrated that the uncharacterized dehydrogenase DVU0826:DVU0827 is necessary for the synthesis of pyridoxal phosphate. In addition, we used the mutant fitness data to identify genes involved in the assimilation of diverse nitrogen sources and gained insights into the mechanism of inhibition of chlorate and molybdate. Our large-scale fitness dataset and RB-TnSeq mutant library are community-wide resources that can be used to generate further testable hypotheses into the gene functions of this environmentally and industrially important group of bacteria.

2.
mBio ; 8(5)2017 10 17.
Article in English | MEDLINE | ID: mdl-29042504

ABSTRACT

Biofilms of sulfate-reducing bacteria (SRB) are of particular interest as members of this group are culprits in corrosion of industrial metal and concrete pipelines as well as being key players in subsurface metal cycling. Yet the mechanism of biofilm formation by these bacteria has not been determined. Here we show that two supposedly identical wild-type cultures of the SRB Desulfovibrio vulgaris Hildenborough maintained in different laboratories have diverged in biofilm formation. From genome resequencing and subsequent mutant analyses, we discovered that a single nucleotide change within DVU1017, the ABC transporter of a type I secretion system (T1SS), was sufficient to eliminate biofilm formation in D. vulgaris Hildenborough. Two T1SS cargo proteins were identified as likely biofilm structural proteins, and the presence of at least one (with either being sufficient) was shown to be required for biofilm formation. Antibodies specific to these biofilm structural proteins confirmed that DVU1017, and thus the T1SS, is essential for localization of these adhesion proteins on the cell surface. We propose that DVU1017 is a member of the lapB category of microbial surface proteins because of its phenotypic similarity to the adhesin export system described for biofilm formation in the environmental pseudomonads. These findings have led to the identification of two functions required for biofilm formation in D. vulgaris Hildenborough and focus attention on the importance of monitoring laboratory-driven evolution, as phenotypes as fundamental as biofilm formation can be altered.IMPORTANCE The growth of bacteria attached to a surface (i.e., biofilm), specifically biofilms of sulfate-reducing bacteria, has a profound impact on the economy of developed nations due to steel and concrete corrosion in industrial pipelines and processing facilities. Furthermore, the presence of sulfate-reducing bacteria in oil wells causes oil souring from sulfide production, resulting in product loss, a health hazard to workers, and ultimately abandonment of wells. Identification of the required genes is a critical step for determining the mechanism of biofilm formation by sulfate reducers. Here, the transporter by which putative biofilm structural proteins are exported from sulfate-reducing Desulfovibrio vulgaris Hildenborough cells was discovered, and a single nucleotide change within the gene coding for this transporter was found to be sufficient to completely stop formation of biofilm.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Biofilms/growth & development , Desulfovibrio vulgaris/genetics , Desulfovibrio vulgaris/physiology , Directed Molecular Evolution , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Mutational Analysis , Genome, Bacterial , Mutant Proteins/genetics , Mutant Proteins/metabolism , Point Mutation , Whole Genome Sequencing
3.
Environ Sci Technol ; 49(2): 924-31, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25534748

ABSTRACT

Sulfate-reducing microbes, such as Desulfovibrio vulgaris Hildenborough, cause "souring" of petroleum reservoirs through produced sulfide and precipitate heavy metals, either as sulfides or by alteration of the metal reduction state. Thus, inhibitors of these microbes, including nitrate and nitrite ions, are studied in order to limit their impact. Nitrite is a potent inhibitor of sulfate reducers, and it has been suggested that nitrate does not inhibit these microbes directly but by reduction to nitrite, which serves as the ultimate inhibitor. Here we provide evidence that nitrate inhibition of D. vulgaris can be independent of nitrite production. We also show that D. vulgaris can use nitrite as a nitrogen source or terminal electron acceptor for growth. Moreover, we report that use of nitrite as a terminal electron acceptor requires nitrite reductase (nrfA) as a D. vulgaris nrfA mutant cannot respire nitrite but remains capable of utilizing nitrite as a nitrogen source. These results illuminate previously uncharacterized metabolic abilities of D. vulgaris that may allow niche expansion in low-sulfate environments. Understanding these abilities may lead to better control of sulfate-reducing bacteria in industrial settings and more accurate prediction of their interactions in the environment.


Subject(s)
Desulfovibrio vulgaris/drug effects , Nitrates/analysis , Nitrites/analysis , Catalysis , Electrons , Environmental Monitoring/methods , Lactates/chemistry , Nitrite Reductases/metabolism , Nitrogen/chemistry , Nitrogen Oxides/metabolism , Oxidation-Reduction , Oxygen/chemistry , Petroleum , Sulfates/metabolism , Sulfides/metabolism
4.
J Bacteriol ; 191(15): 4732-49, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19376873

ABSTRACT

The yjeE, yeaZ, and ygjD genes are highly conserved in the genomes of eubacteria, and ygjD orthologs are also found throughout the Archaea and eukaryotes. In this study, we have constructed conditional expression strains for each of these genes in the model organism Escherichia coli K12. We show that each gene is essential for the viability of E. coli under laboratory growth conditions. Growth of the conditional strains under nonpermissive conditions results in dramatic changes in cell ultrastructure. Deliberate repression of the expression of yeaZ results in cells with highly condensed nucleoids, while repression of yjeE and ygjD expression results in at least a proportion of very enlarged cells with an unusual peripheral distribution of DNA. Each of the three conditional expression strains can be complemented by multicopy clones harboring the rstA gene, which encodes a two-component-system response regulator, strongly suggesting that these proteins are involved in the same essential cellular pathway. The results of bacterial two-hybrid experiments show that YeaZ can interact with both YjeE and YgjD but that YgjD is the preferred interaction partner. The results of in vitro experiments indicate that YeaZ mediates the proteolysis of YgjD, suggesting that YeaZ and YjeE act as regulators to control the activity of this protein. Our results are consistent with these proteins forming a link between DNA metabolism and cell division.


Subject(s)
Escherichia coli K12/metabolism , Escherichia coli K12/physiology , Escherichia coli Proteins/physiology , Microbial Viability/genetics , Escherichia coli K12/genetics , Escherichia coli K12/ultrastructure , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Genome, Bacterial/genetics , Genome, Bacterial/physiology , Microscopy, Electron, Transmission , Protein Binding , Protein Multimerization , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...