Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2117, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459063

ABSTRACT

Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here we use and develop advanced techniques to describe immune cells (hemocytes) from the clinically relevant tick Ixodes scapularis at a single-cell resolution. We observe molecular alterations in hemocytes upon feeding and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We reveal hemocyte clusters exhibiting defined signatures related to immunity, metabolism, and proliferation. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, two I. scapularis hemocyte markers, impacting blood-feeding, molting behavior, and bacterial acquisition. Mechanistically, astakine alters hemocyte proliferation, whereas hemocytin affects the c-Jun N-terminal kinase (JNK) signaling pathway in I. scapularis. Altogether, we discover a role for tick hemocytes in immunophysiology and provide a valuable resource for comparative biology in arthropods.


Subject(s)
Anaplasma phagocytophilum , Arthropods , Borrelia burgdorferi , Ixodes , Lyme Disease , Animals , Hemocytes , Ixodes/microbiology , Borrelia burgdorferi/physiology
2.
mBio ; 15(3): e0247923, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38380961

ABSTRACT

Although genetic manipulation is one of the hallmarks of model organisms, its applicability to non-model species has remained difficult due to our limited understanding of their fundamental biology. For instance, manipulation of a cell line originated from the black-legged tick Ixodes scapularis, an arthropod that serves as a vector for several human pathogens, has yet to be established. Here, we demonstrate the successful genetic modification of the commonly used tick ISE6 line through ectopic expression and clustered regularly interspaced palindromic repeats [(CRISPR)/CRISPR-associated protein 9 (Cas9)] genome editing. We performed ectopic expression using nucleofection and attained CRISPR-Cas9 editing via homology-dependent recombination. Targeting the E3 ubiquitin ligase x-linked inhibitor of apoptosis (xiap) and its substrate p47 led to an alteration in molecular signaling within the immune deficiency network and increased infection of the rickettsial agent Anaplasma phagocytophilum in I. scapularis ISE6 cells. Collectively, our findings complement techniques for the genetic engineering of I. scapularis ticks, which currently limit efficient and scalable molecular genetic screens in vivo.IMPORTANCEGenetic engineering in arachnids has lagged compared to insects, largely because of substantial differences in their biology. This study unveils the implementation of ectopic expression and CRISPR-Cas9 gene editing in a tick cell line. We introduced fluorescently tagged proteins in ISE6 cells and edited its genome via homology-dependent recombination. We ablated the expression of xiap and p47, two signaling molecules present in the immune deficiency (IMD) pathway of Ixodes scapularis. Impairment of the tick IMD pathway, an analogous network of the tumor necrosis factor receptor in mammals, led to enhanced infection of the rickettsial agent Anaplasma phagocytophilum. Altogether, our findings provide a critical technical resource to the scientific community to enable a deeper understanding of biological circuits in the black-legged tick I. scapularis.


Subject(s)
Anaplasma phagocytophilum , Borrelia burgdorferi , Ixodes , Rickettsia , Animals , Humans , Borrelia burgdorferi/genetics , Anaplasma phagocytophilum/genetics , Cell Line , Mammals
3.
Parasit Vectors ; 17(1): 57, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336752

ABSTRACT

BACKGROUND: The blacklegged tick, Ixodes scapularis, transmits most vector-borne diseases in the US. It vectors seven pathogens of public health relevance, including the emerging human pathogen Anaplasma phagocytophilum. Nevertheless, it remains critically understudied compared to other arthropod vectors. Ixodes scapularis releases a variety of molecules that assist in the modulation of host responses. Recently, it was found that extracellular vesicles (EVs) carry several of these molecules and may impact microbial transmission to the mammalian host. EV biogenesis has been studied in mammalian systems and is relatively well understood, but the molecular players important for the formation and secretion of EVs in arthropods of public health relevance remain elusive. RabGTPases are among the major molecular players in mammalian EV biogenesis. They influence membrane identity and vesicle budding, uncoating, and motility. METHODS: Using BLAST, an in silico pathway for EV biogenesis in ticks was re-constructed. We identified Rab27 for further study. EVs were collected from ISE6 tick cells after knocking down rab27 to examine its role in tick EV biogenesis. Ixodes scapularis nymphs were injected with small interfering RNAs to knock down rab27 and then fed on naïve and A. phagocytophilum-infected mice to explore the importance of rab27 in tick feeding and bacterial acquisition. RESULTS: Our BLAST analysis identified several of the proteins involved in EV biogenesis in ticks, including Rab27. We show that silencing rab27 in I. scapularis impacts tick fitness. Additionally, ticks acquire less A. phagocytophilum after rab27 silencing. Experiments in the tick ISE6 cell line show that silencing of rab27 causes a distinct range profile of tick EVs, indicating that Rab27 is needed to regulate EV biogenesis. CONCLUSIONS: Rab27 is needed for successful tick feeding and may be important for acquiring A. phagocytophilum during a blood meal. Additionally, silencing rab27 in tick cells results in a shift of extracellular vesicle size. Overall, we have observed that Rab27 plays a key role in tick EV biogenesis and the tripartite interactions among the vector, the mammalian host, and a microbe it encounters.


Subject(s)
Anaplasma phagocytophilum , Ixodes , Humans , Animals , Mice , Ixodes/microbiology , Anaplasma phagocytophilum/genetics , Mammals
4.
bioRxiv ; 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37693411

ABSTRACT

Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here, we describe immune cells or hemocytes from the clinically relevant tick Ixodes scapularis using bulk and single cell RNA sequencing combined with depletion via clodronate liposomes, RNA interference, Clustered Regularly Interspaced Short Palindromic Repeats activation (CRISPRa) and RNA-fluorescence in situ hybridization (FISH). We observe molecular alterations in hemocytes upon tick infestation of mammals and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We predict distinct hemocyte lineages and reveal clusters exhibiting defined signatures for immunity, metabolism, and proliferation during hematophagy. Furthermore, we perform a mechanistic characterization of two I. scapularis hemocyte markers: hemocytin and astakine. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, which impacts blood feeding and molting behavior of ticks. Hemocytin specifically affects the c-Jun N-terminal kinase (JNK) signaling pathway, whereas astakine alters hemocyte proliferation in I. scapularis. Altogether, we uncover the heterogeneity and pleiotropic roles of hemocytes in ticks and provide a valuable resource for comparative biology in arthropods.

5.
Trends Parasitol ; 39(10): 873-885, 2023 10.
Article in English | MEDLINE | ID: mdl-37591719

ABSTRACT

Ticks can transmit a variety of human pathogens, including intracellular and extracellular bacteria, viruses, and protozoan parasites. Historically, their saliva has been of immense interest due to its anticoagulant, anti-inflammatory, and anesthetic properties. Only recently, it was discovered that tick saliva contains extracellular vesicles (EVs). Briefly, it has been observed that proteins associated with EVs are important for multiple tick-borne intracellular microbial lifestyles. The impact of tick EVs on viral and intracellular bacterial pathogen transmission from the tick to the mammalian host has been shown experimentally. Additionally, tick EVs interact with the mammalian skin immune system at the bite site. The interplay between tick EVs, the transmission of pathogens, and the host skin immune system affords opportunities for future research.


Subject(s)
Extracellular Vesicles , Skin , Humans , Animals , Saliva , Mammals
6.
bioRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37292783

ABSTRACT

Arthropod-borne microbes rely on the metabolic state of a host to cycle between evolutionarily distant species. For instance, arthropod tolerance to infection may be due to redistribution of metabolic resources, often leading to microbial transmission to mammals. Conversely, metabolic alterations aids in pathogen elimination in humans, who do not ordinarily harbor arthropod-borne microbes. To ascertain the effect of metabolism on interspecies relationships, we engineered a system to evaluate glycolysis and oxidative phosphorylation in the tick Ixodes scapularis. Using a metabolic flux assay, we determined that the rickettsial bacterium Anaplasma phagocytophilum and the Lyme disease spirochete Borrelia burgdorferi, which are transstadially transmitted in nature, induced glycolysis in ticks. On the other hand, the endosymbiont Rickettsia buchneri, which is transovarially maintained, had a minimal effect on I. scapularis bioenergetics. Importantly, the metabolite ß-aminoisobutyric acid (BAIBA) was elevated during A. phagocytophilum infection of tick cells following an unbiased metabolomics approach. Thus, we manipulated the expression of genes associated with the catabolism and anabolism of BAIBA in I. scapularis and detected impaired feeding on mammals, reduced bacterial acquisition, and decreased tick survival. Collectively, we reveal the importance of metabolism for tick-microbe relationships and unveil a valuable metabolite for I. scapularis fitness.

7.
Proc Natl Acad Sci U S A ; 120(20): e2208673120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155900

ABSTRACT

The immune deficiency (IMD) pathway directs host defense in arthropods upon bacterial infection. In Pancrustacea, peptidoglycan recognition proteins sense microbial moieties and initiate nuclear factor-κB-driven immune responses. Proteins that elicit the IMD pathway in non-insect arthropods remain elusive. Here, we show that an Ixodes scapularis homolog of croquemort (Crq), a CD36-like protein, promotes activation of the tick IMD pathway. Crq exhibits plasma membrane localization and binds the lipid agonist 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol. Crq regulates the IMD and jun N-terminal kinase signaling cascades and limits the acquisition of the Lyme disease spirochete B. burgdorferi. Additionally, nymphs silenced for crq display impaired feeding and delayed molting to adulthood due to a deficiency in ecdysteroid synthesis. Collectively, we establish a distinct mechanism for arthropod immunity outside of insects and crustaceans.


Subject(s)
Arthropods , Bacterial Infections , Borrelia burgdorferi , Ixodes , Lyme Disease , Animals , Ixodes/microbiology , Borrelia burgdorferi/genetics , NF-kappa B , Lyme Disease/microbiology
8.
Nat Commun ; 12(1): 3696, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140472

ABSTRACT

Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.


Subject(s)
Bacterial Infections/immunology , Bacterial Infections/metabolism , Extracellular Vesicles/metabolism , Skin/parasitology , Ticks/metabolism , Ticks/microbiology , Anaplasma phagocytophilum/pathogenicity , Animals , Arthropods/metabolism , Arthropods/microbiology , Arthropods/physiology , Cell Line , Dermacentor/metabolism , Dermacentor/microbiology , Dermacentor/physiology , Extracellular Vesicles/ultrastructure , Francisella tularensis/pathogenicity , Gene Ontology , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/parasitology , Intravital Microscopy , Ixodes/metabolism , Ixodes/microbiology , Ixodes/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Proteomics , R-SNARE Proteins/metabolism , Skin/immunology , Skin/microbiology , T-Lymphocytes/metabolism , Tandem Mass Spectrometry , Vesicle-Associated Membrane Protein 2/metabolism
9.
Elife ; 92020 10 29.
Article in English | MEDLINE | ID: mdl-33118933

ABSTRACT

Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.


Subject(s)
Lipid Metabolism , Vector Borne Diseases/metabolism , Animals , Borrelia/metabolism , Culicidae/parasitology , Culicidae/virology , Humans , Insecta/microbiology , Insecta/virology , Ticks/microbiology , Ticks/virology , Trypanosomatina/metabolism , Vector Borne Diseases/transmission
10.
Trends Parasitol ; 36(10): 807-815, 2020 10.
Article in English | MEDLINE | ID: mdl-32819827

ABSTRACT

Metabolism influences biochemical networks, and arthropod vectors are endowed with an immune system that affects microbial acquisition, persistence, and transmission to humans and other animals. Here, we aim to persuade the scientific community to expand their interests in immunometabolism beyond mammalian hosts and towards arthropod vectors. Immunometabolism investigates the interplay of metabolism and immunology. We provide a conceptual framework for investigators from diverse disciplines and indicate that relationships between microbes, mammalian hosts and their hematophagous arthropods may result in cost-effective (mutualism) or energetically expensive (parasitism) interactions. We argue that disparate resource allocations between species may partially explain why some microbes act as pathogens when infecting humans and behave as mutualistic or commensal organisms when colonizing arthropod vectors.


Subject(s)
Arthropod Vectors/immunology , Arthropod Vectors/metabolism , Arthropods/immunology , Arthropods/metabolism , Animals , Arthropod Vectors/microbiology , Arthropods/microbiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...