Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Immunol ; 212(1): 117-129, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38019121

ABSTRACT

The vascular endothelium acts as a dynamic interface between blood and tissue. TNF-α, a major regulator of inflammation, induces endothelial cell (EC) transcriptional changes, the overall response dynamics of which have not been fully elucidated. In the present study, we conducted an extended time-course analysis of the human EC response to TNF, from 30 min to 72 h. We identified regulated genes and used weighted gene network correlation analysis to decipher coexpression profiles, uncovering two distinct temporal phases: an acute response (between 1 and 4 h) and a later phase (between 12 and 24 h). Sex-based subset analysis revealed that the response was comparable between female and male cells. Several previously uncharacterized genes were strongly regulated during the acute phase, whereas the majority in the later phase were IFN-stimulated genes. A lack of IFN transcription indicated that this IFN-stimulated gene expression was independent of de novo IFN production. We also observed two groups of genes whose transcription was inhibited by TNF: those that resolved toward baseline levels and those that did not. Our study provides insights into the global dynamics of the EC transcriptional response to TNF, highlighting distinct gene expression patterns during the acute and later phases. Data for all coding and noncoding genes is provided on the Web site (http://www.endothelial-response.org/). These findings may be useful in understanding the role of ECs in inflammation and in developing TNF signaling-targeted therapies.


Subject(s)
Endothelium, Vascular , Gene Expression Profiling , Male , Humans , Female , Endothelium, Vascular/metabolism , Endothelial Cells/metabolism , Signal Transduction , Cells, Cultured , Inflammation/genetics , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Front Immunol ; 14: 1181761, 2023.
Article in English | MEDLINE | ID: mdl-37287977

ABSTRACT

Background: Neutrophil Extracellular Traps (NETs) are key mediators of immunothrombotic mechanisms and defective clearance of NETs from the circulation underlies an array of thrombotic, inflammatory, infectious, and autoimmune diseases. Efficient NET degradation depends on the combined activity of two distinct DNases, DNase1 and DNase1-like 3 (DNase1L3) that preferentially digest double-stranded DNA (dsDNA) and chromatin, respectively. Methods: Here, we engineered a dual-active DNase with combined DNase1 and DNase1L3 activities and characterized the enzyme for its NET degrading potential in vitro. Furthermore, we produced a mouse model with transgenic expression of the dual-active DNase and analyzed body fluids of these animals for DNase1 and DNase 1L3 activities. We systematically substituted 20 amino acid stretches in DNase1 that were not conserved among DNase1 and DNase1L3 with homologous DNase1L3 sequences. Results: We found that the ability of DNase1L3 to degrade chromatin is embedded into three discrete areas of the enzyme's core body, not the C-terminal domain as suggested by the state-of-the-art. Further, combined transfer of the aforementioned areas of DNase1L3 to DNase1 generated a dual-active DNase1 enzyme with additional chromatin degrading activity. The dual-active DNase1 mutant was superior to native DNase1 and DNase1L3 in degrading dsDNA and chromatin, respectively. Transgenic expression of the dual-active DNase1 mutant in hepatocytes of mice lacking endogenous DNases revealed that the engineered enzyme was stable in the circulation, released into serum and filtered to the bile but not into the urine. Conclusion: Therefore, the dual-active DNase1 mutant is a promising tool for neutralization of DNA and NETs with potential therapeutic applications for interference with thromboinflammatory disease states.


Subject(s)
Endodeoxyribonucleases , Extracellular Traps , Mice , Animals , Endodeoxyribonucleases/genetics , Extracellular Traps/metabolism , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Chromatin , DNA/metabolism , Deoxyribonucleases/genetics
3.
Front Cardiovasc Med ; 9: 1008410, 2022.
Article in English | MEDLINE | ID: mdl-36518684

ABSTRACT

Calibrated Automated Thrombography (CAT) is a versatile and sensitive method for analyzing coagulation reactions culminating in thrombin generation (TG). Here, we present a CAT method for analyzing TG in murine whole blood by adapting the CAT assay used for measuring TG in human plasma. The diagnostically used artificial and physiologic factor XII (FXII) contact activators kaolin, ellagic acid and polyphosphate (polyP) stimulated TG in murine blood in a dose-dependent manner resulting in a gradual increase in endogenous thrombin potential and peak thrombin, with shortened lag times and times to peak. The activated FXII inhibitor rHA-Infestin-4 and direct oral anticoagulants (DOACs) interfered with TG triggered by kaolin, ellagic acid and polyP and TG was completely attenuated in blood of FXII- (F12 -/-) and FXI-deficient (F11 -/-) mice. Moreover, reconstitution of blood from F12 -/- mice with human FXII restored impaired contact-stimulated TG. HEK293 cell-purified polyP also initiated FXII-driven TG in mouse whole blood and addition of the selective inhibitor PPX_Δ12 ablated natural polyP-stimulated TG. In conclusion, the data provide a method for analysis of contact activation-mediated TG in murine whole blood. As the FXII-driven intrinsic pathway of coagulation has emerged as novel target for antithrombotic agents that are validated in mouse thrombosis and bleeding models, our novel assay could expedite therapeutic drug development.

4.
Res Pract Thromb Haemost ; 6(3): e12706, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35494505

ABSTRACT

A State of the Art lecture titled "Proteomics in Thrombosis Research" was presented at the ISTH Congress in 2021. In clinical practice, there is a need for improved plasma biomarker-based tools for diagnosis and risk prediction of venous thromboembolism (VTE). Analysis of blood, to identify plasma proteins with potential utility for such tools, could enable an individualized approach to treatment and prevention. Technological advances to study the plasma proteome on a large scale allows broad screening for the identification of novel plasma biomarkers, both by targeted and nontargeted proteomics methods. However, assay limitations need to be considered when interpreting results, with orthogonal validation required before conclusions are drawn. Here, we review and provide perspectives on the application of affinity- and mass spectrometry-based methods for the identification and analysis of plasma protein biomarkers, with potential application in the field of VTE. We also provide a future perspective on discovery strategies and emerging technologies for targeted proteomics in thrombosis research. Finally, we summarize relevant new data on this topic, presented during the 2021 ISTH Congress.

5.
Arterioscler Thromb Vasc Biol ; 41(12): 2990-3004, 2021 12.
Article in English | MEDLINE | ID: mdl-34706560

ABSTRACT

OBJECTIVE: Endothelial cell (EC) dysfunction is a well-established response to cardiovascular disease risk factors, such as smoking and obesity. Risk factor exposure can modify EC signaling and behavior, leading to arterial and venous disease development. Here, we aimed to identify biomarker panels for the assessment of EC dysfunction, which could be useful for risk stratification or to monitor treatment response. Approach and Results: We used affinity proteomics to identify EC proteins circulating in plasma that were associated with cardiovascular disease risk factor exposure. Two hundred sixteen proteins, which we previously predicted to be EC-enriched across vascular beds, were measured in plasma samples (N=1005) from the population-based SCAPIS (Swedish Cardiopulmonary Bioimage Study) pilot. Thirty-eight of these proteins were associated with body mass index, total cholesterol, low-density lipoprotein, smoking, hypertension, or diabetes. Sex-specific analysis revealed that associations predominantly observed in female- or male-only samples were most frequently with the risk factors body mass index, or total cholesterol and smoking, respectively. We show a relationship between individual cardiovascular disease risk, calculated with the Framingham risk score, and the corresponding biomarker profiles. CONCLUSIONS: EC proteins in plasma could reflect vascular health status.


Subject(s)
Cardiovascular Diseases/blood , Endothelium, Vascular/metabolism , Proteomics/methods , Biomarkers/blood , Cardiovascular Diseases/pathology , Endothelium, Vascular/pathology , Female , Heart Disease Risk Factors , Humans , Male , Middle Aged
6.
Nat Commun ; 12(1): 5596, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34552086

ABSTRACT

Contact activation refers to the process of surface-induced activation of factor XII (FXII), which initiates blood coagulation and is captured by the activated partial thromboplastin time (aPTT) assay. Here, we show the mechanism and diagnostic implications of FXII contact activation. Screening of recombinant FXII mutants identified a continuous stretch of residues Gln317-Ser339 that was essential for FXII surface binding and activation, thrombin generation and coagulation. Peptides spanning these 23 residues competed with surface-induced FXII activation. Although FXII mutants lacking residues Gln317-Ser339 were susceptible to activation by plasmin and plasma kallikrein, they were ineffective in supporting arterial and venous thrombus formation in mice. Antibodies raised against the Gln317-Ser339 region induced FXII activation and triggered controllable contact activation in solution leading to thrombin generation by the intrinsic pathway of coagulation. The antibody-activated aPTT allows for standardization of particulate aPTT reagents and for sensitive monitoring of coagulation factors VIII, IX, XI.


Subject(s)
Blood Coagulation , Factor XII/chemistry , Factor XII/metabolism , Amino Acid Sequence , Animals , Antibodies/pharmacology , Blood Coagulation/drug effects , Blood Platelets/metabolism , Factor XII/genetics , Factor XII/immunology , Factor XIIa/metabolism , Mice , Mutation , Partial Thromboplastin Time/standards , Peptides/chemistry , Peptides/genetics , Peptides/immunology , Peptides/metabolism , Thrombosis/diagnosis , Thrombosis/genetics , Thrombosis/metabolism
7.
Blood ; 137(10): 1392-1405, 2021 03 11.
Article in English | MEDLINE | ID: mdl-32932519

ABSTRACT

Polyphosphate is a procoagulant inorganic polymer of linear-linked orthophosphate residues. Multiple investigations have established the importance of platelet polyphosphate in blood coagulation; however, the mechanistic details of polyphosphate homeostasis in mammalian species remain largely undefined. In this study, xenotropic and polytropic retrovirus receptor 1 (XPR1) regulated polyphosphate in platelets and was implicated in thrombosis in vivo. We used bioinformatic analyses of omics data to identify XPR1 as a major phosphate transporter in platelets. XPR1 messenger RNA and protein expression inversely correlated with intracellular polyphosphate content and release. Pharmacological interference with XPR1 activity increased polyphosphate stores, led to enhanced platelet-driven coagulation, and amplified thrombus formation under flow via the polyphosphate/factor XII pathway. Conditional gene deletion of Xpr1 in platelets resulted in polyphosphate accumulation, accelerated arterial thrombosis, and augmented activated platelet-driven pulmonary embolism without increasing bleeding in mice. These data identify platelet XPR1 as an integral regulator of platelet polyphosphate metabolism and reveal a fundamental role for phosphate homeostasis in thrombosis.


Subject(s)
Blood Platelets/metabolism , Polyphosphates/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Virus/metabolism , Thrombosis/metabolism , Animals , Biological Transport , Blood Coagulation , Factor XII/metabolism , Female , Male , Mice , Thrombosis/blood , Xenotropic and Polytropic Retrovirus Receptor
8.
Cell Mol Bioeng ; 12(1): 15-32, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31719897

ABSTRACT

INTRODUCTION: Inflammation is an important risk-associated component of many diseases and can be diagnosed by molecular imaging of specific molecules. The aim of this study was to evaluate the possibility of targeting adhesion molecules on inflammation-activated endothelial cells and macrophages using an innovative multimodal polyvinyl alcohol-based microbubble (MB) contrast agent developed for diagnostic use in ultrasound, magnetic resonance, and nuclear imaging. METHODS: We assessed the binding efficiency of antibody-conjugated multimodal contrast to inflamed murine or human endothelial cells (ECs), and to peritoneal macrophages isolated from rats with peritonitis, utilizing the fluorescence characteristics of the MBs. Single-photon emission tomography (SPECT) was used to illustrate 99mTc-labeled MB targeting and distribution in an experimental in vivo model of inflammation. RESULTS: Flow cytometry and confocal microscopy showed that binding of antibody-targeted MBs to the adhesion molecules ICAM-1, VCAM-1, or E-selectin, expressed on cytokine-stimulated ECs, was up to sixfold higher for human and 12-fold higher for mouse ECs, compared with that of non-targeted MBs. Under flow conditions, both VCAM-1- and E-selectin-targeted MBs adhered more firmly to stimulated human ECs than to untreated cells, while VCAM-1-targeted MBs adhered best to stimulated murine ECs. SPECT imaging showed an approximate doubling of signal intensity from the abdomen of rats with peritonitis, compared with healthy controls, after injection of anti-ICAM-1-MBs. CONCLUSIONS: This novel multilayer contrast agent can specifically target adhesion molecules expressed as a result of inflammatory stimuli in vitro, and has potential for use in disease-specific multimodal diagnostics in vivo using antibodies against targets of interest.

9.
Sci Rep ; 8(1): 14668, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279450

ABSTRACT

The intermediate filament protein nestin is expressed during embryonic development, but considered largely restricted to areas of regeneration in the adult. Here, we perform a body-wide transcriptome and protein-profiling analysis to reveal that nestin is constitutively, and highly-selectively, expressed in adult human endothelial cells (EC), independent of proliferative status. Correspondingly, we demonstrate that it is not a marker for tumour EC in multiple malignancy types. Imaging of EC from different vascular beds reveals nestin subcellular distribution is shear-modulated. siRNA inhibition of nestin increases EC proliferation, and nestin expression is reduced in atherosclerotic plaque neovessels. eQTL analysis reveals an association between SNPs linked to cardiovascular disease and reduced aortic EC nestin mRNA expression. Our study challenges the dogma that nestin is a marker of proliferation, and provides insight into its regulation and function in EC. Furthermore, our systems-based approach can be applied to investigate body-wide expression profiles of any candidate protein.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Nestin/physiology , Systems Biology/methods , Adult , Aorta/cytology , Aorta/pathology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Databases, Genetic/statistics & numerical data , Datasets as Topic , Endothelium, Vascular/cytology , Endothelium, Vascular/pathology , Female , Gene Expression Profiling/methods , Haplotypes , Humans , Male , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Polymorphism, Single Nucleotide , Primary Cell Culture , Proteomics/methods , Quantitative Trait Loci , RNA, Small Interfering/metabolism , Tissue Array Analysis/methods
10.
Arterioscler Thromb Vasc Biol ; 37(1): 13-20, 2017 01.
Article in English | MEDLINE | ID: mdl-27834692

ABSTRACT

Coagulation factor XII (FXII, Hageman factor) is a plasma protease that in its active form (FXIIa) initiates the procoagulant and proinflammatory contact system. This name arises from FXII's unique mechanism of activation that is induced by binding (contact) to negatively charged surfaces. Various substances have the capacity to trigger FXII contact-activation in vivo including mast cell-derived heparin, misfolded protein aggregates, collagen, nucleic acids, and polyphosphate. FXII deficiency is not associated with bleeding, and for decades, the factor was considered to be dispensable for coagulation in vivo. However, despite the fact that humans and animals with deficiency in FXII have a normal hemostatic capacity, animal models revealed a critical role of FXIIa-driven coagulation in thromboembolic diseases. In addition to its role in thrombosis, FXIIa contributes to inflammation through the activation of the inflammatory bradykinin-producing kallikrein-kinin system. Pharmacological inhibition of FXII/FXIIa interferes with thrombosis and inflammation in animal models. Thus, targeting the FXIIa-driven contact system seems to be a promising and safe therapeutic anticoagulation treatment strategy, with additional anti-inflammatory effects. Here, we discuss novel functions of FXIIa in cardiovascular thrombotic and inflammatory disorders.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Blood Coagulation/drug effects , Factor XII/antagonists & inhibitors , Fibrinolytic Agents/therapeutic use , Inflammation Mediators/antagonists & inhibitors , Inflammation/drug therapy , Kallikrein-Kinin System/drug effects , Thromboembolism/drug therapy , Animals , Disease Models, Animal , Factor XII/genetics , Factor XII/metabolism , Factor XIIa/antagonists & inhibitors , Factor XIIa/metabolism , Genetic Predisposition to Disease , Humans , Inflammation/blood , Inflammation/genetics , Inflammation/immunology , Inflammation Mediators/blood , Mice, Knockout , Molecular Targeted Therapy , Thromboembolism/blood , Thromboembolism/genetics , Thromboembolism/immunology
11.
Blood ; 128(23): e59-e66, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27742707

ABSTRACT

There is a clear clinical need for high-specificity plasma biomarkers for predicting risk of venous thromboembolism (VTE), but thus far, such markers have remained elusive. Utilizing affinity reagents from the Human Protein Atlas project and multiplexed immuoassays, we extensively analyzed plasma samples from 2 individual studies to identify candidate protein markers associated with VTE risk. We screened plasma samples from 88 VTE cases and 85 matched controls, collected as part of the Swedish "Venous Thromboembolism Biomarker Study," using suspension bead arrays composed of 755 antibodies targeting 408 candidate proteins. We identified significant associations between VTE occurrence and plasma levels of human immunodeficiency virus type I enhancer binding protein 1 (HIVEP1), von Willebrand factor (VWF), glutathione peroxidase 3 (GPX3), and platelet-derived growth factor ß (PDGFB). For replication, we profiled plasma samples of 580 cases and 589 controls from the French FARIVE study. These results confirmed the association of VWF and PDGFB with VTE after correction for multiple testing, whereas only weak trends were observed for HIVEP1 and GPX3. Although plasma levels of VWF and PDGFB correlated modestly (ρ ∼ 0.30) with each other, they were independently associated with VTE risk in a joint model in FARIVE (VWF P < .001; PDGFB P = .002). PDGFΒ was verified as the target of the capture antibody by immunocapture mass spectrometry and sandwich enzyme-linked immunosorbent assay. In conclusion, we demonstrate that high-throughput affinity plasma proteomic profiling is a valuable research strategy to identify potential candidate biomarkers for thrombosis-related disorders, and our study suggests a novel association of PDGFB plasma levels with VTE.


Subject(s)
Proteomics , Proto-Oncogene Proteins c-sis/blood , Venous Thromboembolism/blood , Biomarkers/blood , DNA-Binding Proteins/blood , Female , Glutathione Peroxidase/blood , Humans , Male , Risk Factors , Transcription Factors/blood , von Willebrand Factor/metabolism
12.
Thromb Res ; 141 Suppl 2: S4-7, 2016 May.
Article in English | MEDLINE | ID: mdl-27207422

ABSTRACT

Cancer is an established risk factor for venous thromboembolism (VTE) and VTE is the second leading cause of death in patients with cancer. The incidence of cancer-related thrombosis is rising and is associated with worse outcomes. Despite our growing understanding on tumor-driven procoagulant mechanisms including cancer-released procoagulant proteases, expression of tissue factor on cancer cells and derived microvesicles, as well as alterations in the extracellular matrix of the cancer cell milieu, anticoagulation therapy in cancer patients has remained challenging. This review comments on a newly discovered cancer-associated procoagulant pathway. Experimental VTE models in mice and studies on patient cancer material revealed that prostate cancer cells and associated exosomes display the inorganic polymer polyphosphate on their plasma membrane. Polyphosphate activates blood coagulation factor XII and initiates thrombus formation via the intrinsic pathway of coagulation. Pharmacologic inhibition of factor XII activity protects mice from VTE and reduces thrombin coagulant activity in plasma of prostate cancer patients. Factor XII inhibitors provide thrombo-protection without impairing hemostatic mechanisms and thus, unlike currently used anticoagulants, do not increase bleeding risk. Interference with the polyphosphate/factor XII pathway may provide the novel opportunity for safe anticoagulation therapy in patients with malignancies.


Subject(s)
Anticoagulants/therapeutic use , Factor XII/metabolism , Neoplasms/complications , Polyphosphates/metabolism , Thrombosis/complications , Thrombosis/drug therapy , Animals , Anticoagulants/adverse effects , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Factor XII/antagonists & inhibitors , Humans , Neoplasms/blood , Neoplasms/drug therapy , Neoplasms/metabolism , Pulmonary Embolism/complications , Pulmonary Embolism/drug therapy , Pulmonary Embolism/metabolism , Thrombosis/blood , Thrombosis/metabolism , Venous Thromboembolism/complications , Venous Thromboembolism/drug therapy , Venous Thromboembolism/metabolism
13.
Methods Mol Biol ; 1430: 231-48, 2016.
Article in English | MEDLINE | ID: mdl-27172958

ABSTRACT

Methods are described for analyzing adhesion of isolated cells (such as leukocytes, tumor cells, or precursor cells) to purified adhesion receptors or cultured endothelial cells. "Static" assays (where cells are allowed to settle on the adhesive substrates) and flow-based assays (where cells are perfused over the substrates) are compared. Direct observations of the time course of adhesion and migration can be made when purified proteins or endothelial cells are cultured in plates, after cells are allowed to settle onto them for a desired period. In the flow-based assay, cells are perfused through coated glass capillaries, flow-channels incorporating coated plates, or commercially available preformed channels. Again, direct video-microscopic observations are made. In this assay various stages of capture, immobilization, and migration can be followed. In general, the static systems have higher throughput and greatest ease of use, but yield less detailed information, while the flow-based assay is most difficult to set up but is most physiologically relevant if one is interested in the dynamics of adhesion in the vasculature.


Subject(s)
Cell Adhesion Molecules/metabolism , Collagen/isolation & purification , Endothelial Cells/cytology , Fibronectins/isolation & purification , Laminin/isolation & purification , Cell Adhesion , Collagen/metabolism , E-Selectin/metabolism , Endothelial Cells/metabolism , Fibronectins/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Laminin/metabolism , P-Selectin/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
14.
Ann Transl Med ; 3(17): 247, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26605293

ABSTRACT

The plasma protein factor XII (FXII) is the initiating protease of the procoagulant and proinflammatory contact system. FXII activates both the bradykinin (BK) producing kallikrein-kinin system and the intrinsic pathway of coagulation. Contact with negatively charged surfaces induces auto-activation of zymogen FXII that results in activated FXII (FXIIa). Various in vivo activators of FXII have been identified including heparin, misfolded protein aggregates, nucleic acids and polyphosphate. Murine models have established a central role of FXII in arterial and venous thromboembolic diseases. Despite the central function of FXII in pathologic thrombosis, its deficiency does not impair hemostasis in animals or humans. The selective role of FXIIa in thrombosis, but not hemostasis, offers an exciting novel strategy for safe anticoagulation based on interference with FXIIa. We have generated the recombinant fully human FXIIa-blocking antibody 3F7, which abolished FXIIa enzymatic activity and prevented thrombosis in a cardiopulmonary bypass system in large animals, in the absence of increased therapy-associated bleeding. Furthermore, 3F7 also interfered with BK-driven edema in the severe swelling disorder hereditary angioedema (HAE) type III. Taken together, targeting FXIIa with 3F7 appears to be a promising approach to treat edema disorders and thrombosis.

15.
J Gen Virol ; 96(12): 3598-3612, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26416316

ABSTRACT

Human cytomegalovirus (hCMV) is a beta herpesvirus that establishes lifelong infection. Although the virus does not usually cause overt clinical symptoms in immunocompetent individuals it can have deleterious effects in immunocompromised patients, such as those on post-transplant medication or with HIV infection. hCMV is the most common congenital infection and can lead to serious fetal sequelae. Endothelial cells (ECs) are natural hosts for hCMV in vivo, therefore, investigations of how this cell type is modulated by infection are key to understanding hCMV pathogenesis. Previous studies have examined the effect of secretomes from hCMV-infected cells on EC angiogenesis, whereas the effect of direct infection on this process has not been so well investigated. Here, we show that placental ECs are viral targets during congenital infection and that vessels in infected tissue appear morphologically abnormal. We demonstrate that the clinical hCMV strain VR1814 impaired EC tube assembly in in vitro angiogenesis assays and inhibited wound healing ability in scratch assays. Secretomes from infected cultures did not impair angiogenesis of uninfected ECs, suggesting that cell-intrinsic changes, as opposed to secreted factors, were responsible. We observed viral gene transcription dependent downregulation of the expression of angiogenesis-associated genes, including angiopoietin-2, TEK receptor and vascular endothelial growth factor receptors. An alternative clinical hCMV stain, TB40E showed similar effects on EC angiogenesis. Together, our data indicate that direct infection with hCMV can induce an anti-migratory and anti-angiogenic EC phenotype, which could have a detrimental effect on the vasculature development in infected tissues.


Subject(s)
Cell Movement , Cytomegalovirus Infections/congenital , Cytomegalovirus/physiology , Endothelial Cells/physiology , Endothelial Cells/virology , Neovascularization, Physiologic , Cells, Cultured , Cytomegalovirus Infections/virology , Female , Gene Expression Regulation, Viral , Humans , Infectious Disease Transmission, Vertical , Interleukin-10/genetics , Interleukin-10/metabolism , Placenta/blood supply , Placenta/cytology , Placenta/virology , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
J Am Soc Nephrol ; 25(8): 1669-78, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24722450

ABSTRACT

Anemia is a feature of CKD and a complication of renal transplantation, often caused by impaired production of erythropoietin. The kidney is a target organ for human cytomegalovirus (hCMV) in such patients, but it is not known whether hCMV effects erythropoietin production. We found that kidneys from patients with CKD were positive for hCMV protein and that blood levels of hCMV IgG inversely correlated with red blood cell count. In mice, systemic murine cytomegalovirus infection decreased serum erythropoietin levels. In human erythropoietin-producing cells, hCMV inhibited hypoxia-induced expression of erythropoietin mRNA and protein. hCMV early gene expression was responsible, as ultraviolet-inactivated virus had no effect and valganciclovir treatment showed that late gene expression was nonessential. Hypoxia-induced gene transcription is controlled by the transcription factors hypoxia-inducible transcription factor (HIF)-1α and HIF2α, which are constitutively produced but stable only under low oxygen conditions. We found that hCMV inhibited constitutive production of HIF2α mRNA. HIF2α is thought to be the master regulator of erythropoietin transcription. Single-cell analysis revealed that nuclear accumulation of HIF2α was inhibited in hCMV-infected cells, and the extent of inhibition correlated with hCMV protein expression. Our findings suggest that renal hCMV infection could induce or exacerbate anemia in patients.


Subject(s)
Cytomegalovirus/physiology , Erythropoietin/metabolism , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/virology , Animals , Antibodies, Viral/blood , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Culture Techniques , Cell Hypoxia , Erythrocyte Count , Erythropoietin/genetics , Hemoglobins/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunoglobulin G/metabolism , Mice , RNA, Messenger/metabolism , Renal Insufficiency, Chronic/pathology
17.
Arterioscler Thromb Vasc Biol ; 34(4): 801-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24558109

ABSTRACT

OBJECTIVE: Human cytomegalovirus (HCMV) is a widespread pathogen that correlates with various clinical complications, including atherosclerosis. HCMV is released into the circulation during primary infection and periodic viral reactivation, allowing virus-platelet interactions. Platelets are important in the onset and development of atherosclerosis, but the consequences of platelet-HCMV interactions are unclear. APPROACH AND RESULTS: We studied the effects of HCMV-platelet interactions in blood from healthy donors using the purified clinical HCMV isolate VR1814. We demonstrated that HCMV bound to a Toll-like receptor (TLR) 2-positive platelet subpopulation, which resulted in signal transduction, degranulation, and release of proinflammatory CD40L and interleukin-1ß and proangiogenic vascular endothelial-derived growth factor. In mice, murine CMV activated wild-type but not TLR2-deficient platelets. However, supernatant from murine CMV-stimulated wild-type platelets also activated TLR2-deficient platelets, indicating that activated platelets generated soluble mediators that triggered further platelet activation, independent of TLR2 expression. Inhibitor studies, using ADP receptor antagonists and apyrase, revealed that ADP release is important to trigger secondary platelet activation in response to HCMV. HCMV-activated platelets rapidly bound to and activated neutrophils, supporting their adhesion and transmigration through endothelial monolayers. In an in vivo model, murine CMV induced systemic upregulation of platelet-leukocyte aggregates and plasma vascular endothelial-derived growth factor in mice and showed a tendency to enhance neutrophil extravasation in a TLR2-dependent fashion. CONCLUSIONS: HCMV is a well-adapted pathogen that does not induce immediate thrombotic events. However, HCMV-platelet interactions lead to proinflammatory and proangiogenic responses, which exacerbate tissue damage and contribute to atherogenesis. Therefore, platelets might contribute to the effects of HCMV in accelerating atherosclerosis.


Subject(s)
Blood Platelets/metabolism , Blood Platelets/virology , Cytomegalovirus/pathogenicity , Inflammation Mediators/metabolism , Inflammation/etiology , Neovascularization, Pathologic , Toll-Like Receptor 2/metabolism , Adenosine Diphosphate/metabolism , Animals , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/virology , Blood Platelets/drug effects , Blood Platelets/immunology , CD40 Ligand/metabolism , Cell Degranulation , Cells, Cultured , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/virology , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Activation , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/virology , Platelet Activation/drug effects , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, Purinergic P2/drug effects , Receptors, Purinergic P2/metabolism , Signal Transduction/drug effects , Time Factors , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 2/genetics , Transendothelial and Transepithelial Migration , Vascular Endothelial Growth Factor A/metabolism
18.
J Virol Methods ; 193(1): 251-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23764419

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is the aetiologic agent of Kaposi's sarcoma (KS), a tumour of endothelial cell origin. The study of KS development was aided by the generation of a recombinant GFP (latent)/RFP (lytic)-expressing KSHV (rKSHV.219) by Vieira and O'Hearn (2004). In this study the first data characterising primary endothelial cell infection and transmission with this virus is presented. Infection was predominantly latent and the percentage of GFP-positive cells increased over time. Neither horizontal transmission of infection, nor cellular proliferation, explained this increase. Analysis of latency-associated nuclear antigen (LANA-1) expression revealed that a threshold level of infection was required for GFP expression early post infection. At later time points GFP correlated more closely with LANA-1 expression, likely due to the accumulation of GFP over time. This study provides methodological guidance for the use of rKSHV.21. In addition, it highlights potential problems associated with the use of fluorescent proteins as markers of viral infection.


Subject(s)
Endothelial Cells/virology , Herpesvirus 8, Human/physiology , Virus Replication , Cells, Cultured , Fluorescence , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Herpesvirus 8, Human/growth & development , Humans , Staining and Labeling/methods , Time Factors , Virology/methods , Virus Latency
19.
J Immunol ; 190(2): 678-88, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23233723

ABSTRACT

Psoriasis is characterized by a specific microRNA expression profile, distinct from that of healthy skin. MiR-31 is one of the most highly overexpressed microRNAs in psoriasis skin; however, its biological role in the disease has not been studied. In this study, we show that miR-31 is markedly overexpressed in psoriasis keratinocytes. Specific inhibition of miR-31 suppressed NF-κB-driven promoter luciferase activity and the basal and TNF-α-induced production of IL-1ß, CXCL1/growth-related oncogene-α, CXCL5/epithelial-derived neutrophil-activating peptide 78, and CXCL8/IL-8 in human primary keratinocytes. Moreover, interference with endogenous miR-31 decreased the ability of keratinocytes to activate endothelial cells and attract leukocytes. By microarray expression profiling, we identified genes regulated by miR-31 in keratinocytes. Among these genes, we identified serine/threonine kinase 40 (STK40), a negative regulator of NF-κB signaling, as a direct target for miR-31. Silencing of STK40 rescued the suppressive effect of miR-31 inhibition on cytokine/chemokine expression, indicating that miR-31 regulates cytokine/chemokine expression via targeting STK40 in keratinocytes. Finally, we demonstrated that TGF-ß1, a cytokine highly expressed in psoriasis epidermis, upregulated miR-31 expression in keratinocytes in vitro and in vivo. Collectively, our findings suggest that overexpression of miR-31 contributes to skin inflammation in psoriasis lesions by regulating the production of inflammatory mediators and leukocyte chemotaxis to the skin. Our data indicate that inhibition of miR-31 may be a potential therapeutic option in psoriasis.


Subject(s)
Cytokines/biosynthesis , Gene Expression , Keratinocytes/metabolism , MicroRNAs/genetics , Protein Serine-Threonine Kinases/metabolism , Psoriasis/genetics , Psoriasis/immunology , Chemokines/biosynthesis , Chemotaxis, Leukocyte/immunology , Endothelial Cells/metabolism , Gene Expression Regulation , Humans , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , NF-kappa B , Protein Serine-Threonine Kinases/genetics , Psoriasis/enzymology , RNA Interference , Signal Transduction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
20.
Thromb Haemost ; 108(4): 719-29, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22836389

ABSTRACT

Beyond their primary role in haemostasis and tissue repair, platelets are causally involved in the onset of inflammatory reactions, cell proliferation and immune response. Platelet activation and platelet binding to the endothelium result in release of chemokines and increased expression of adhesion molecules, which promote the recruitment of leukocytes that will eventually migrate across the endothelium into the tissue. Here, we provide the first evidence that platelets stimulated with oxidised low-density lipoprotein (oxLDL) directly enhance recruitment and transmigration of neutrophils, via cell-cell interaction. OxLDL immediately activates platelets, which then rapidly bind to neutrophils, foster their activation and facilitate transmigration through an endothelial monolayer. The observed effects of oxLDL on platelet-neutrophil aggregate (PNA) formation depend on incubation time, lipoprotein concentration and the degree of oxidative modification of LDL. PNA form within minutes following stimulation by oxLDL and remain for up to 1 h post stimulation, while native LDL is unable to induce platelet-neutrophil interactions. In the presence of acetylsalicylic acid the formation of PNA in response to oxLDL is virtually absent, and platelets fail to further enhance oxLDL-induced neutrophil transmigration. P2Y1 and P2Y12 inhibitors have less pronounced effects on PNA formation in response to oxLDL. Furthermore, we demonstrate that the PI3K pathway is essential for efficient neutrophil transmigration induced by oxLDL. Consequently, platelets enhance neutrophil transmigration in response to oxLDL and might thereby contribute essentially to the amplification of inflammatory processes within the vessel wall, which fosters the development of atherosclerosis.


Subject(s)
Blood Platelets/drug effects , Blood Platelets/physiology , Lipoproteins, LDL/pharmacology , Neutrophils/drug effects , Neutrophils/physiology , Aspirin/pharmacology , Atherosclerosis/etiology , CD11b Antigen/metabolism , Cell Aggregation/drug effects , Cell Aggregation/physiology , Cell Communication/drug effects , Cell Communication/physiology , Cell Movement/drug effects , Cell Movement/physiology , Chromones/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , In Vitro Techniques , Inflammation/etiology , Lipoproteins, LDL/physiology , Morpholines/pharmacology , P-Selectin/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/blood , Phosphoinositide-3 Kinase Inhibitors , Platelet Activation/drug effects , Platelet Activation/physiology , Purinergic P2Y Receptor Antagonists/pharmacology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...