Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10640, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724519

ABSTRACT

Slide electrification is the spontaneous separation of electric charges at the rear of water drops sliding over solid surfaces. This study delves into how surfaces treated with a low-pressure plasma impact water slide electrification. Ar, O2, and N2 plasma treatment reduced the drop charge and contact angles on glass, quartz, and SU-8 coated with 1H,1H,2H,2H-perfluoroctyltrichlorosilane (PFOTS), and polystyrene. Conversely, 64% higher drop charge was achieved using electrode-facing treatment in plasma chamber. Based on the zeta potential, Kelvin potential, and XPS measurements, the plasma effects were attributed to alterations of the topmost layer's chemistry, such as oxidation and etching, and superficially charge deposition. The surface top layer charges were less negative after electrode-facing and more negative after bulk plasma treatment. As a result, the zeta potential was less negative after electrode-facing and more negative after bulk plasma treatment. Although the fluorinated layer was applied after plasma activation, we observed a discernible impact of plasma-glass treatment on drop charging. Plasma surface modification offers a means to adjust drop charges: electrode-facing treatment of the fluorinated layer leads to an enhanced drop charge, while plasma treatment on the substrate prior to fluorination diminishes drop charges, all without affecting contact angles or surface roughness.

2.
Sci Rep ; 14(1): 12033, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797765

ABSTRACT

High speed side-view videos of sliding drops enable researchers to investigate drop dynamics and surface properties. However, understanding the physics of sliding requires knowledge of the drop width. A front-view perspective of the drop is necessary. In particular, the drop's width is a crucial parameter owing to its association with the friction force. Incorporating extra cameras or mirrors to monitor changes in the width of drops from a front-view perspective is cumbersome and limits the viewing area. This limitation impedes a comprehensive analysis of sliding drops, especially when they interact with surface defects. Our study explores the use of various regression and multivariate sequence analysis (MSA) models to estimate the drop width at a solid surface solely from side-view videos. This approach eliminates the need to incorporate additional equipment into the experimental setup. In addition, it ensures an unlimited viewing area of sliding drops. The Long Short Term Memory (LSTM) model with a 20 sliding window size has the best performance with the lowest root mean square error (RMSE) of 67 µm. Within the spectrum of drop widths in our dataset, ranging from 1.6 to 4.4 mm, this RMSE indicates that we can predict the width of sliding drops with an error of 2.4%. Furthermore, the applied LSTM model provides a drop width across the whole sliding length of 5 cm, previously unattainable.

3.
Adv Mater ; : e2311470, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760007

ABSTRACT

Layers of nanometer thick polydimethylsiloxane (PDMS) are applied as hydrophobic coatings because of their environmentally friendly and chemically inert properties. In applications such as heat exchangers or fog harvesting, low water drop friction on surfaces is required. While the onset of motion (static friction) has been studied, the knowledge of dynamic friction needs to be improved. To minimize drop friction, it is essential to understand which processes lead to energy dissipation and cause dynamic friction? Here, the dynamic friction of drops on PDMS brushes of different thicknesses is measured, covering the whole available velocity regime. The brush thickness L turns out to be a predictor for drop friction. 4-5 nm thick PDMS brush shows the lowest dynamic friction. A certain minimal thickness is necessary to form homogeneous surfaces and reduce the attractive van der Waals interaction between water and the substrate. The increase in dynamic friction above L = 5 nm is also attributed to the increasing viscoelastic dissipation of the capillary ridge formed at the contact line. The height of the ridge is related to the brush thickness. Fluorescence correlation spectroscopy and atomic force measurements support this interpretation. Sum-frequency generation further indicates a maximum order at the PDMS-water interface at intermediate thickness.

4.
Langmuir ; 40(19): 9934-9944, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690991

ABSTRACT

We investigate the mass transfer and membrane growth processes during capsule formation by the interaction of the biopolymer xanthan gum with CnTAB surfactants. When a drop of xanthan gum polymer solution is added to the surfactant solution, a membrane is formed by coacervation. It encapsulates the polymer drop in the surfactant solution. The underlying mechanisms and dynamic processes during capsule formation are not yet understood in detail. Therefore, we characterized the polymer-surfactant complex formation during coacervation by measuring the surface tension and surface elasticity at the solution-air interface for different surfactant chain lengths and concentrations. The adsorption behavior of the mixed polymer-surfactant system at the solution-air interface supports the understanding of observed trends during the capsule formation. We further measured the change in capsule pressure over time and simultaneously imaged the membrane growth via confocal microscopy. The cross-linking and shrinkage during the membrane formation by coacervation leads to an increasing tensile stress in the elastic membrane, resulting in a rapid pressure rise. Afterward, the pressure gradually decreases and the capsule shrinks as water diffuses out. This is not only due to the initial capsule overpressure but also due to osmosis caused by the higher ionic strength of the surfactant solution outside the capsule compared to the polymer solution inside the capsule. The influence of polymer concentration and surfactant type and concentration on the pressure changes and the membrane structure are studied in this work, providing detailed insights into the dynamic membrane formation process by coacervation. This knowledge can be used to produce capsules with tailored membrane properties and to develop a suitable encapsulation protocol in technological applications. The obtained insights into the mass transfer of water across the capsule membrane are important for future usage in separation techniques and the food industry and allow us to better predict the capsule time stability.

5.
Soft Matter ; 20(15): 3349-3358, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563221

ABSTRACT

Slide electrification of drops is mostly investigated on tilted plate setups. Hence, the drop charging at low sliding velocity remains unclear. We overcome the limitations by developing an electro drop friction force instrument (eDoFFI). Using eDoFFI, we investigate slide electrification at the onset of drop sliding and at low sliding velocities ≤ 1 cm s-1. The novelty of eDoFFI is the simultaneous measurements of the drop discharging current and the friction force acting on the drop. The eDoFFI tool facilitates control on drop length and width using differently shaped rings. Hereby, slide electrification experiments with the defined drop length-to-width ratios >1 and <1 are realized. We find that width of the drop is the main geometrical parameter which determines drop discharging current and charge separation. We combine Kawasaki-Furmidge friction force equation with our finding on drop discharging current. This combination facilitates the direct measurement of surface charge density (σ) deposited behind the drop. We calculate σ ≈ 45 µC m-2 on Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOTS) and ≈20 µC m-2 on Trichloro(octyl)silane (OTS) coated glass surfaces. We find that the charge separation by moving drops is independent of sliding velocity ≤ 1 cm s-1. The reverse sliding of drop along the same scanline facilitates calculation of the surface neutralization time constant. The eDoFFI links two scientific communities: one which focuses on the friction forces and one which focuses on the slide electrification of drops.

6.
J Am Chem Soc ; 146(14): 10073-10083, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38563738

ABSTRACT

When water droplets move over a hydrophobic surface, they and the surface become oppositely charged by what is known as slide electrification. This effect can be used to generate electricity, but the physical and especially the chemical processes that cause droplet charging are still poorly understood. The most likely process is that at the base of the droplet, an electric double layer forms, and the interfacial charge remains on the surface behind the three-phase contact line. Here, we investigate the influence of the chemistry of surface (coating) and bulk (substrate) on the slide electrification. We measured the charge of a series of droplets sliding over hydrophobically coated (1-5 nm thickness) glass substrates. Within a series, the charge of the droplet decreases with the increasing droplet number and reaches a constant value after about 50 droplets (saturated state). We show that the charge of the first droplet depends on both coating and substrate chemistry. For a fully fluorinated or fully hydrogenated monolayer on glass, the influence of the substrate on the charge of the first droplet is negligible. In the saturated state, the chemistry of the substrate dominates. Charge separation can be considered as an acid base reaction between the ions of water and the surface. By exploiting the acidity (Pearson hardness) of elements such as aluminum, magnesium, or sodium, a positive saturated charge can be obtained by the counter charge remaining on the surface. With this knowledge, the droplet charge can be manipulated by the chemistry of the substrate.

7.
Soft Matter ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639086

ABSTRACT

Spontaneous charge separation in drops sliding over a hydrophobized insulator surface is a well-known phenomenon and lots of efforts have been made to utilize this effect for energy harvesting. For maximizing the efficiency of such devices, a comprehensive understanding of the dewetted surface charge would be required to quantitatively predict the electric current signals, in particular for drop sequences. Here, we use a method based on mirror charge detection to locally measure the surface charge density after drops move over a hydrophobic surface. For this purpose, we position a metal electrode beneath the hydrophobic substrate to measure the capacitive current induced by the moving drop. Furthermore, we investigate drop-induced charging on different dielectric surfaces together with the surface neutralization processes. The surface neutralizes over a characteristic time, which is influenced by the substrate and the surrounding environment. We present an analytical model that describes the slide electrification using measurable parameters such as the surface charge density and its neutralization time. Understanding the model parameters and refining them will enable a targeted optimization of the efficiency in solid-liquid charge separation.

8.
Nat Chem ; 16(6): 1024-1033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459235

ABSTRACT

Stimuli-responsive hydrogels with programmable shape changes are promising materials for soft robots, four-dimensional printing, biomedical devices and artificial intelligence systems. However, these applications require the fabrication of hydrogels with complex, heterogeneous and reconfigurable structures and customizable functions. Here we report the fabrication of hydrogel assemblies with these features by reversibly gluing hydrogel units using a photocontrolled metallopolymer adhesive. The metallopolymer adhesive firmly attached individual hydrogel units via metal-ligand coordination and polymer chain entanglement. Hydrogel assemblies containing temperature- and pH-responsive hydrogel units showed controllable shape changes and motions in response to these external stimuli. To reconfigure their structures, the hydrogel assemblies were disassembled by irradiating the metallopolymer adhesive with light; the disassembled hydrogel units were then reassembled using the metallopolymer adhesive with heating. The shape change and structure reconfiguration abilities allow us to reprogramme the functions of hydrogel assemblies. The development of reconfigurable hydrogel assemblies using reversible adhesives provides a strategy for designing intelligent materials and soft robots with user-defined functions.

9.
ACS Appl Mater Interfaces ; 16(1): 1941-1949, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38115194

ABSTRACT

Heat exchangers are made of metals because of their high heat conductivity and mechanical stability. Metal surfaces are inherently hydrophilic, leading to inefficient filmwise condensation. It is still a challenge to coat these metal surfaces with a durable, robust, and thin hydrophobic layer, which is required for efficient dropwise condensation. Here, we report the nonstructured and ultrathin (∼6 nm) polydimethylsiloxane (PDMS) brushes on copper that sustain high-performing dropwise condensation in high supersaturation. Due to the flexible hydrophobic siloxane polymer chains, the coating has low resistance to drop sliding and excellent chemical stability. The PDMS brushes can sustain dropwise condensation for up to ∼8 h during exposure to 111 °C saturated steam flowing at 3 m·s-1, with a 5-7 times higher heat transfer coefficient compared to filmwise condensation. The surface is self-cleaning and can reduce the level of bacterial attachment by 99%. This low-cost, facile, fluorine-free, and scalable method is suitable for a great variety of heat transfer applications.

10.
Langmuir ; 40(1): 1096-1108, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38153401

ABSTRACT

We studied the evaporation-induced formation of supraparticles from dispersions of elongated colloidal particles using experiments and computer simulations. Aqueous droplets containing a dispersion of ellipsoidal and spherical polystyrene particles were dried on superamphiphobic surfaces at different humidity values that led to varying evaporation rates. Supraparticles made from only ellipsoidal particles showed short-range lateral ordering at the supraparticle surface and random orientations in the interior regardless of the evaporation rate. Particle-based simulations corroborated the experimental observations in the evaporation-limited regime and showed an increase in the local nematic ordering as the diffusion-limited regime was reached. A thin shell of ellipsoids was observed at the surface when supraparticles were made from binary mixtures of ellipsoids and spheres. Image analysis revealed that the supraparticle porosity increased with an increasing aspect ratio of the ellipsoids.

11.
J Phys Chem Lett ; 14(49): 11110-11116, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38052008

ABSTRACT

Water drops on insulating hydrophobic substrates can generate electric potentials of kilovolts upon sliding for a few centimeters. We show that the drop saturation voltage corresponds to an amplified value of the solid-liquid surface potential at the substrate. The amplification is given by the substrate geometry, the drop and substrate dielectric properties, and the Debye length within the liquid. Next to enabling an easy and low-cost way to measure surface- and zeta- potentials, the high drop voltages have implications for energy harvesting, droplet microfluidics, and electrostatic discharge protection.

12.
Phys Rev Lett ; 131(22): 228201, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101382

ABSTRACT

Slide electrification-the spontaneous charge separation by sliding aqueous drops-can lead to an electrostatic potential in the order of 1 kV and change drop motion substantially. To find out how slide electrification influences the contact angles of moving drops, we analyzed the dynamic contact angles of aqueous drops sliding down tilted plates with insulated surfaces, grounded surfaces, and while grounding the drop. The observed decrease in dynamic contact angles at different salt concentrations is attributed to two effects: An electrocapillary reduction of contact angles caused by drop charging and a change in the free surface energy of the solid due to surface charging.

13.
ACS Appl Mater Interfaces ; 15(47): 55119-55128, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37962333

ABSTRACT

Membrane distillation (MD) is an important technique for brine desalination and wastewater treatment that may utilize waste or solar heat. To increase the distillation rate and minimize membrane wetting and fouling, we deposit a layer of polysiloxane nanofilaments on microporous membranes. In this way, composite membranes with multiscale pore sizes are created. The performance of these membranes in the air gap and direct contact membrane distillation was investigated in the presence of salt solutions, solutions containing bovine serum albumin, and solutions containing the surfactant sodium dodecyl sulfate. In comparison to conventional hydrophobic membranes, our multiscale porous membranes exhibit superior fouling resistance while attaining a higher distillation flux without using fluorinated compounds. This study demonstrates a viable method for optimizing MD processes for wastewater and saltwater treatment.

14.
ACS Appl Mater Interfaces ; 15(46): 54060-54072, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37953492

ABSTRACT

Large-scale preparation of liquid-like coatings with perfect transparency via solventless and room-temperature processes using low-cost and biocompatible materials is of tremendous interest for a broad range of applications. Here, we present a mechanochemical activation strategy for solventless grafting of poly(dimethylsiloxane) (PDMS) onto glass, silicon wafers, and ceramics. Activation is achieved via ball milling PDMS without using any solvents or additives prior to application. Ball milling results in chain scission and generation of free radicals, allowing room-temperature grafting at durations ≤1 h. The deposition of ball-milled PDMS can be facilitated by brushing or drop-casting, enabling large-scale applications. The resulting surfaces facilitate the sliding of droplets at angles <20° for liquids with surface tension ranging from 22 to 73 mN/m. An important application for public health is generating anti-biofouling coatings on sanitary ware. For example, PDMS-grafted surfaces prepared on a regular-size toilet bowl exhibit a 105-fold decrease in the attachment of bacteria from urine. These findings highlight the significant potential of mechanochemical processes for the practical preparation of liquid-like surfaces.

15.
Nat Commun ; 14(1): 6886, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898660

ABSTRACT

Membrane distillation (MD) is an emerging desalination technology that exploits phase change to separate water vapor from saline based on low-grade energy. As MD membranes come into contact with saline for days or weeks during desalination, membrane pores have to be sufficiently small (typically <0.2 µm) to avoid saline wetting into the membrane. However, in order to achieve high distillation flux, the pore size should be large enough to maximize transmembrane vapor transfer. These conflicting requirements of pore geometry pose a challenge to membrane design and currently hinder broader applications of MD. To address this fundamental challenge, we developed a super liquid-repellent membrane with hierarchical porous structures by coating a polysiloxane nanofilament network on a commercial micro-porous polyethersulfone membrane matrix. The fluorine-free nanofilament coating effectively prevents membrane wetting under high hydrostatic pressure (>11.5 bar) without compromising vapor transport. With large inner micro-porous structures, the nanofilament-coated membrane improves the distillation flux by up to 60% over the widely used commercially available membranes, while showing excellent salt rejection and operating stability. Our approach will allow the fabrication of high-performance composite membranes with multi-scale porous structures that have wide-ranging applications beyond desalination, such as in cleaning wastewater.

17.
ACS Appl Mater Interfaces ; 15(32): 38986-38995, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37530444

ABSTRACT

The surface-templated evaporation-driven (S-TED) method that uses liquid-repellent surfaces has attracted considerable attention for its use in fabricating supraparticles of defined shape, size, and porosity. However, challenges in achieving mass production have impeded the widespread adoption of the S-TED method. To overcome this limit, we introduce an evaporation-driven "multiple supraparticle" synthesis by drying arrays of self-lubricating colloidal dispersion microdrops. To facilitate this synthetic method, a hydrophilic micropattern is prepared on a hydrophobic substrate as a template. During the removal of the substrate out of a dispersion, liquid drops are trapped and generate a microdrop array. To produce supraparticles, the contact lines of the trapped drops must be able to recede freely during evaporation. However, hydrophilic micropatterns induce strong contact line pinning for microdrops that hinders supraparticle formation. Herein, we solve this contradiction by employing an Ouzo-like colloidal dispersion, where we can control the wettability of the drop trapping domain. The self-lubrication effect provided by the Ouzo-like solution enables smooth movement of the drops' contact lines during evaporation, thereby resulting in the successful fabrication of supraparticle arrays even within the trapping domain. This strategy offers a promising and scalable approach for large-scale evaporation-driven supraparticle synthesis with a potential for extension to various primary colloidal particles, further broadening its applicability.

18.
Langmuir ; 39(30): 10367-10374, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37466052

ABSTRACT

Surface tension is a physical property that is central to our understanding of wetting phenomena. One could easily measure liquid surface tension using commercially available tensiometers (e.g., Wilhelmy plate method) or by optical imaging (e.g., pendant drop method). However, such instruments are designed for bulk liquid volumes on the order of milliliters. In order to perform similar measurements on extremely small sample volumes in the range of femtoliters, atomic force microscope (AFM) is considered as a promising tool. It was previously reported that by fabricating a special "nanoneedle"-shaped cantilever probe, a Wilhelmy-like experiment can be performed with AFM. By measuring the capillary force between such special probes and a liquid surface, surface tension could be calculated. Here, we carried out measurements on microscopic droplets with AFM, but instead, using standard pyramidal cantilever tips. The cantilevers were coated with a hydrophilic polyethylene glycol-based polymer brush in a simple one-step process, which reduced its contact angle hysteresis for most liquids. Numerical simulations of a liquid drop interacting with a pyramidal or conical geometry were used to calculate surface tension from the experimentally measured force. The results on micrometer-sized drops agree well with bulk tensiometer measurement of three test liquids (mineral oil, ionic liquid, and glycerol), within a maximum error of 10%. Our method eliminates the need for specially fabricated "nanoneedle" tips, thus reducing the complexity and cost of measurement.

19.
Nat Commun ; 14(1): 4571, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37516769

ABSTRACT

Liquid drops sliding on tilted surfaces is an everyday phenomenon and is important for many industrial applications. Still, it is impossible to predict the drop's sliding velocity. To make a step forward in quantitative understanding, we measured the velocity [Formula: see text], contact width [Formula: see text], contact length [Formula: see text], advancing [Formula: see text], and receding contact angle [Formula: see text] of liquid drops sliding down inclined flat surfaces made of different materials. We find the friction force acting on sliding drops of polar and non-polar liquids with viscosities ([Formula: see text]) ranging from 10-3 to 1 [Formula: see text] can empirically be described by [Formula: see text] for a velocity range up to 0.7 ms-1. The dimensionless friction coefficient [Formula: see text] defined here varies from 20 to 200. It is a material parameter, specific for a liquid/surface combination. While static wetting is fully described by [Formula: see text] and [Formula: see text], for dynamic wetting the friction coefficient is additionally necessary.

20.
J Phys Chem B ; 127(31): 6958-6968, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37499259

ABSTRACT

The conductivity of ionic liquids (ILs) in nanopores is essential when considering their application as materials for energy. However, no consensus has been reached about the influence of confinement on the mobility of the ions. A series of ILs bearing the same cation, 1-butyl-3-methylimidazolium ([BMIM]+), and six different anions ([Cl]-, [Br]-, [I]-, [BF4]-, [PF6]-, and [TFSI]-) with radii from 0.168 to 0.326 nm were investigated with respect to their self-assembly, the thermodynamics, and the ionic conductivity in the bulk, during flow and under confinement in cylindrical nanopores with sizes in the range from 400 to 25 nm. In the bulk, the [BMIM]+[X]- exhibits weak ordering as a result of cation-anion correlations (charge alteration peak), and nanophase separation of polar/apolar groups. Liquid-to-glass temperatures were found to differ by ∼50 K, their viscosities by a factor of ∼270, and their conductivities by a factor of 24 (all at a temperature of 303 K). Electrostatic interactions were largely responsible for variations in the glass temperature, the viscosity, and the conductivity. Confined ILs behave differently from the bulk. The majority of ILs in the bulk were prone to crystallization during heating but were unable to crystallize in the smaller pores. Changes in dc-conductivity were used as markers of the phase state. This allowed the construction of the effective phase diagrams under confinement. The ILs penetrate the pores with an effective viscosity of the order of their viscosity in their bulk state. However, within the pores the dc-conductivity was reduced relative to bulk, indicating the immobilization of ions at the pore walls. Hydrophobization of the pore walls by hexamethyldisilazane could partially restore the conductivity. ILs are model systems where the phase state and ion mobility can be controlled by confinement.

SELECTION OF CITATIONS
SEARCH DETAIL
...