Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34589268

ABSTRACT

Nanoceria (CeO2, cerium oxide nanoparticles) is proposed as a therapeutic for multiple disorders. In blood, nanoceria becomes protein-coated, changing its surface properties to yield a different presentation to cells. There is little information on the interaction of nanoceria with blood proteins. The current study is the first to report the proteomics identification of plasma and serum proteins adsorbed to nanoceria. The results identify a number of plasma and serum proteins interacting with nanoceria, proteins whose normal activities regulate numerous cell functions: antioxidant/detoxification, energy regulation, lipoproteins, signaling, complement, immune function, coagulation, iron homeostasis, proteolysis, inflammation, protein folding, protease inhibition, adhesion, protein/RNA degradation, and hormonal. The principal implications of this study are: 1) The protein corona may positively or negatively affect nanoceria cellular uptake, subsequent organ bioprocessing, and effects; and 2) Nanoceria adsorption may alter protein structure and function, including pro- and inflammatory effects. Consequently, prior to their use as therapeutic agents, better understanding of the effects of nanoceria protein coating is warranted.

2.
J Neurochem ; 121(4): 680-92, 2012 May.
Article in English | MEDLINE | ID: mdl-22394374

ABSTRACT

Signal transduction and activator of transcription-3 (STAT3) plays an important role in neuronal survival, regeneration and repair after brain injury. We previously demonstrated that STAT3 is activated in brain after cerebral ischemia specifically in neurons. The effect was sex-specific and modulated by sex steroids, with higher activation in females than males. In the current study, we used a proteomics approach to identify downstream proteins affected by ischemia in male and female wild-type (WT) and neuron-specific STAT3 knockout (KO) mice. We established four comparison groups based on the transgenic condition and the hemisphere analyzed, respectively. Moreover, the sexual variable was taken into account and male and female animals were analyzed independently. Results support a role for STAT3 in metabolic, synaptic, structural and transcriptional responses to cerebral ischemia, indeed the adaptive response to ischemia/reperfusion injury is delayed in neuronal-specific STAT3 KO mice. The differences observed between males and females emphasize the importance of sex-specific neuronal survival and repair mechanisms, especially those involving antioxidant and energy-related activities, often caused by sex hormones.


Subject(s)
Brain Chemistry/genetics , Brain Ischemia/genetics , Brain/physiology , Proteome , Reperfusion Injury/genetics , STAT3 Transcription Factor/genetics , Animals , Blotting, Western , Brain Ischemia/physiopathology , Chromosome Mapping , Coloring Agents , Electrophoresis, Gel, Two-Dimensional , Female , Functional Laterality/physiology , Image Processing, Computer-Assisted , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/pathology , Male , Mass Spectrometry , Mice , Mice, Knockout , Mice, Transgenic , Reperfusion Injury/physiopathology , Reproducibility of Results , Sex Characteristics , Trypsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL