Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Neurotherapeutics ; 20(1): 22-38, 2023 01.
Article in English | MEDLINE | ID: mdl-36653665

ABSTRACT

Multiple sclerosis (MS) is a complex and long-lasting neurodegenerative disease of the central nervous system (CNS), characterized by the loss of myelin within the white matter and cortical fibers, axonopathy, and inflammatory responses leading to consequent sensory-motor and cognitive deficits of patients. While complete resolution of the disease is not yet a reality, partial tissue repair has been observed in patients which offers hope for therapeutic strategies. To address the molecular and cellular events of the pathomechanisms, a variety of animal models have been developed to investigate distinct aspects of MS disease. Recent advances of multiscale intravital imaging facilitated the direct in vivo analysis of MS in the animal models with perspective of clinical transfer to patients. This review gives an overview of MS animal models, focusing on the current imaging modalities at the microscopic and macroscopic levels and emphasizing the importance of multimodal approaches to improve our understanding of the disease and minimize the use of animals.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Neurodegenerative Diseases , White Matter , Animals , Multiple Sclerosis/diagnostic imaging , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , White Matter/diagnostic imaging , Neuroimaging , Disease Models, Animal
2.
Front Cell Neurosci ; 14: 165, 2020.
Article in English | MEDLINE | ID: mdl-32655371

ABSTRACT

Demyelination and axon degeneration are major events in all neurodegenerative diseases, including multiple sclerosis. Intoxication of oligodendrocytes with lysophosphatidylcholine (LPC) is often used as a selective model of focal and reversible demyelination thought to have no incidence for neurons. To characterize the cascade of cellular events involved in LPC-induced demyelination, we have combined intravital coherent antistoke Raman scattering microscopy with intravital two-photon fluorescence microscopy in multicolor transgenic reporter mice. Moreover, taking advantage of a unique technique of spinal glass window implantation, we here provide the first longitudinal description of cell dynamics in the same volume of interest over weeks after insults. We have detected several patterns of axon-myelin interactions and classified them in early and advanced events. Unexpectedly, we have found that oligodendrocyte damages are followed by axon degeneration within 2 days after LPC incubation, and this degeneration is amplified after the recruitment of the peripheral proinflammatory cells at day 4. Beyond day 7, the recovery of axon number and myelin takes 3 more weeks postlesion and involves a new wave of anti-inflammatory innate immune cells at day 14. Therefore, recurrent imaging over several weeks suggests an important role of peripheral immune cells in regulating both the axonal and oligodendroglial fates and thereby the remyelination status. Better understanding the recruitment of peripheral immune cells during demyelinating events should help to improve diagnosis and therapy.

4.
PLoS Genet ; 14(7): e1007502, 2018 07.
Article in English | MEDLINE | ID: mdl-29979676

ABSTRACT

Left ventricular non-compaction (LVNC) is a rare cardiomyopathy associated with a hypertrabeculated phenotype and a large spectrum of symptoms. It is still unclear whether LVNC results from a defect of ventricular trabeculae development and the mechanistic basis that underlies the varying severity of this pathology is unknown. To investigate these issues, we inactivated the cardiac transcription factor Nkx2-5 in trabecular myocardium at different stages of trabecular morphogenesis using an inducible Cx40-creERT2 allele. Conditional deletion of Nkx2-5 at embryonic stages, during trabecular formation, provokes a severe hypertrabeculated phenotype associated with subendocardial fibrosis and Purkinje fiber hypoplasia. A milder phenotype was observed after Nkx2-5 deletion at fetal stages, during trabecular compaction. A longitudinal study of cardiac function in adult Nkx2-5 conditional mutant mice demonstrates that excessive trabeculation is associated with complex ventricular conduction defects, progressively leading to strain defects, and, in 50% of mutant mice, to heart failure. Progressive impaired cardiac function correlates with conduction and strain defects independently of the degree of hypertrabeculation. Transcriptomic analysis of molecular pathways reflects myocardial remodeling with a larger number of differentially expressed genes in the severe versus mild phenotype and identifies Six1 as being upregulated in hypertrabeculated hearts. Our results provide insights into the etiology of LVNC and link its pathogenicity with compromised trabecular development including compaction defects and ventricular conduction system hypoplasia.


Subject(s)
Gene Expression Regulation, Developmental , Heart Failure/genetics , Heart Ventricles/embryology , Homeobox Protein Nkx-2.5/metabolism , Isolated Noncompaction of the Ventricular Myocardium/genetics , Morphogenesis/genetics , Animals , Disease Models, Animal , Female , Fibrosis , Gene Expression Profiling , Heart Ventricles/pathology , Homeobox Protein Nkx-2.5/genetics , Homeodomain Proteins/metabolism , Humans , Isolated Noncompaction of the Ventricular Myocardium/complications , Isolated Noncompaction of the Ventricular Myocardium/diagnosis , Isolated Noncompaction of the Ventricular Myocardium/pathology , Mice , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Purkinje Fibers/pathology , Sequence Deletion , Severity of Illness Index , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...