Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Spine Surg ; 16(5): 935-943, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35940636

ABSTRACT

BACKGROUND: Lumbar decompression can result in postsurgical instability and spondylolisthesis in patients with lumbar spinal stenosis (LSS). While pedicle screw (PS) constructs improve stability and support fusion, their use can lead to adjacent level degeneration due to rigidity and resultant overload of anatomical structures. The FFX device is a facet spacer designed to be a less invasive alternative for obtaining fusion compared with PS. OBJECTIVE: The present study aimed to compare biomechanical performance of the FFX device to different lumbar spine procedures using the finite element (FE) method. STUDY DESIGN: Comparative biomechanical study by FE method. METHODS: An FE model for the lumbar spine was developed and validated to assess vertebral displacement and stress variations in the facet joints and discs following surgery. Modeled scenarios included a healthy spine as a reference model, laminectomy (LAM), and prior to/following L4-L5 fusion for LAM + FFX and LAM + PS. RESULTS: LAM increased displacement compared with the healthy spine and both instrumented spine procedures. Facet joint stress at adjacent levels for LAM + PS was significantly higher than with LAM + FFX prior to fusion (+13.5% for L3-L4; +15.7% for L5-S1). Adjacent level disc stress at L5-S1 was 7.7% higher for LAM + PS vs LAM + FFX. Adjacent level facet joint and disc stresses for LAM + FFX were equivalent to LAM + PS once fusion occurred. CONCLUSIONS: Instrumented spine fixation prevents the risk of lumbar instability associated with LAM alone. Compared with PS, the FFX device is a less invasive alternative for the treatment of LSS, which potentially lowers the risk of adjacent segment degeneration prior to fusion that provides equivalent stability once fusion is achieved.

2.
Comput Methods Programs Biomed ; 111(2): 389-401, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23731719

ABSTRACT

The medical training concerning childbirth for young obstetricians involves performing real deliveries, under supervision. This medical procedure becomes more complicated when instrumented deliveries requiring the use of forceps or suction cups become necessary. For this reason, the use of a versatile, configurable childbirth simulator, taking into account different anatomical and pathological cases, would provide an important benefit in the training of obstetricians, and improve medical procedures. The production of this type of simulator should be generally based on a computerized birth simulation, enabling the computation of the reproductive organs deformation of the parturient woman and fetal interactions as well as the calculation of efforts produced during the second stage of labor. In this paper, we present a geometrical and biomechanical modeling of the main parturient's organs involved in the birth process, interacting with the fetus. Instead of searching for absolute precision, we search to find a good compromise between accuracy and model complexity. At this stage, to verify the correctness of our hypothesis, we use finite element analysis because of its reliability, precision and stability. Moreover, our study improves the previous work carried out on childbirth simulators because: (a) our childbirth model takes into account all the major organs involved in birth process, thus potentially enabling different childbirth scenarios; (b) fetal head is not treated as a rigid body and its motion is computed by taking into account realistic boundary conditions, i.e. we do not impose a pre-computed fetal trajectory; (c) we take into account the cyclic uterine contractions as well as voluntary efforts produced by the muscles of the abdomen; (d) a slight pressure is added inside the abdomen, representing the residual muscle tone. The next stage of our work will concern the optimization of our numerical resolution approach to obtain interactive time simulation, enabling it to be coupled to our haptic device.


Subject(s)
Biomechanical Phenomena , Computer Simulation , Parturition/physiology , Uterine Contraction/physiology , Algorithms , Female , Finite Element Analysis , Head/anatomy & histology , Head/embryology , Humans , Models, Anatomic , Obstetrics/education , Pelvis/anatomy & histology , Pregnancy , Reproducibility of Results , Software , Time Factors , Uterus/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...