Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 318, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35031603

ABSTRACT

Lung emphysema and chronic bronchitis are the two most common causes of chronic obstructive pulmonary disease. Excess macrophage elastase MMP-12, which is predominantly secreted from alveolar macrophages, is known to mediate the development of lung injury and emphysema. Here, we discovered the endolysosomal cation channel mucolipin 3 (TRPML3) as a regulator of MMP-12 reuptake from broncho-alveolar fluid, driving in two independently generated Trpml3-/- mouse models enlarged lung injury, which is further exacerbated after elastase or tobacco smoke treatment. Mechanistically, using a Trpml3IRES-Cre/eR26-τGFP reporter mouse model, transcriptomics, and endolysosomal patch-clamp experiments, we show that in the lung TRPML3 is almost exclusively expressed in alveolar macrophages, where its loss leads to defects in early endosomal trafficking and endocytosis of MMP-12. Our findings suggest that TRPML3 represents a key regulator of MMP-12 clearance by alveolar macrophages and may serve as therapeutic target for emphysema and chronic obstructive pulmonary disease.


Subject(s)
Macrophages, Alveolar/enzymology , Matrix Metalloproteinase 12/metabolism , Pancreatic Elastase/metabolism , Pulmonary Emphysema/enzymology , Transient Receptor Potential Channels/deficiency , Animals , Disease Models, Animal , Endosomes/metabolism , Female , Humans , Lung/enzymology , Matrix Metalloproteinase 12/genetics , Mice , Mice, Knockout , Pancreatic Elastase/genetics , Pulmonary Emphysema/genetics , Pulmonary Emphysema/metabolism , Transient Receptor Potential Channels/genetics
2.
Sci Adv ; 6(46)2020 11.
Article in English | MEDLINE | ID: mdl-33177082

ABSTRACT

Endolysosomes are dynamic, intracellular compartments, regulating their surface-to-volume ratios to counteract membrane swelling or shrinkage caused by osmotic challenges upon tubulation and vesiculation events. While osmosensitivity has been extensively described on the plasma membrane, the mechanisms underlying endolysosomal surface-to-volume ratio changes and identities of involved ion channels remain elusive. Endolysosomes mediate endocytosis, exocytosis, cargo transport, and sorting of material for recycling or degradation. We demonstrate the endolysosomal cation channel TRPML2 to be hypotonicity/mechanosensitive, a feature crucial to its involvement in fast-recycling processes of immune cells. We demonstrate that the phosphoinositide binding pocket is required for TRPML2 hypotonicity-sensitivity, as substitution of L314 completely abrogates hypotonicity-sensitivity. Last, the hypotonicity-insensitive TRPML2 mutant L314R slows down the fast recycling pathway, corroborating the functional importance of hypotonicity-sensitive TRPML2. Our results highlight TRPML2 as an accelerator of endolysosomal trafficking by virtue of its hypotonicity-sensitivity, with implications in immune cell surveillance and viral trafficking.

3.
Biochim Biophys Acta Mol Basis Dis ; 1866(9): 165571, 2020 09 01.
Article in English | MEDLINE | ID: mdl-31678159

ABSTRACT

The neuronal ceroid lipofuscinoses (NCL) are a group of disorders defined by shared clinical and pathological features, including seizures and progressive decline in vision, neurocognition, and motor functioning, as well as accumulation of autofluorescent lysosomal storage material, or 'ceroid lipofuscin'. Research has revealed thirteen distinct genetic subtypes. Precisely how the gene mutations lead to the clinical phenotype is still incompletely understood, but recent research progress is starting to shed light on disease mechanisms, in both gene-specific and shared pathways. As the application of new sequencing technologies to genetic disease diagnosis has grown, so too has the spectrum of clinical phenotypes caused by mutations in the NCL genes. Most genes causing NCL have probably been identified, underscoring the need for a shift towards applying genomics approaches to achieve a deeper understanding of the molecular basis of the NCLs and related disorders. Here, we summarize the current understanding of the thirteen identified NCL genes and the proteins they encode, touching upon the spectrum of clinical manifestations linked to each of the genes, and we highlight recent progress leading to a broader understanding of key pathways involved in NCL disease pathogenesis and commonalities with other neurodegenerative diseases.


Subject(s)
Neuronal Ceroid-Lipofuscinoses/genetics , Animals , Humans , Membrane Proteins/genetics , Mutation , Neuronal Ceroid-Lipofuscinoses/pathology , Oligonucleotide Array Sequence Analysis
4.
Cells ; 8(12)2019 11 27.
Article in English | MEDLINE | ID: mdl-31783699

ABSTRACT

Alterations in the autophagosomal-lysosomal pathway are a major pathophysiological feature of CLN3 disease, which is the most common form of childhood-onset neurodegeneration. Accumulating autofluorescent lysosomal storage material in CLN3 disease, consisting of dolichols, lipids, biometals, and a protein that normally resides in the mitochondria, subunit c of the mitochondrial ATPase, provides evidence that autophagosomal-lysosomal turnover of cellular components is disrupted upon loss of CLN3 protein function. Using a murine neuronal cell model of the disease, which accurately mimics the major gene defect and the hallmark features of CLN3 disease, we conducted an unbiased search for modifiers of autophagy, extending previous work by further optimizing a GFP-LC3 based assay and performing a high-content screen on a library of ~2000 bioactive compounds. Here we corroborate our earlier screening results and identify expanded, independent sets of autophagy modifiers that increase or decrease the accumulation of autophagosomes in the CLN3 disease cells, highlighting several pathways of interest, including the regulation of calcium signaling, microtubule dynamics, and the mevalonate pathway. Follow-up analysis on fluspirilene, nicardipine, and verapamil, in particular, confirmed activity in reducing GFP-LC3 vesicle burden, while also demonstrating activity in normalizing lysosomal positioning and, for verapamil, in promoting storage material clearance in CLN3 disease neuronal cells. This study demonstrates the potential for cell-based screening studies to identify candidate molecules and pathways for further work to understand CLN3 disease pathogenesis and in drug development efforts.


Subject(s)
Autophagosomes/drug effects , Drug Discovery/methods , Fluspirilene/pharmacology , Neuronal Ceroid-Lipofuscinoses/drug therapy , Nicardipine/pharmacology , Verapamil/pharmacology , Animals , Autophagosomes/metabolism , Autophagosomes/pathology , Autophagy/drug effects , Cell Line , Loss of Function Mutation , Membrane Glycoproteins/genetics , Mice , Molecular Chaperones/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Neuronal Ceroid-Lipofuscinoses/pathology
5.
Cell Chem Biol ; 24(7): 907-916.e4, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28732201

ABSTRACT

To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages.


Subject(s)
Action Potentials/drug effects , Androstadienes/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Endosomes/metabolism , Thiazolidines/pharmacology , Aminopyridines/pharmacology , CD11b Antigen/metabolism , Endosomes/drug effects , HEK293 Cells , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Lung/cytology , Lung/metabolism , Lysosomal-Associated Membrane Protein 1/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Patch-Clamp Techniques , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism , Wortmannin , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
6.
Sci Rep ; 7(1): 2321, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28539581

ABSTRACT

Mutations in the photoreceptor outer segment (OS) specific peripherin-2 lead to autosomal dominant retinitis pigmentosa (adRP). By contrast, mutations in the peripherin-2 homolog Rom-1 cause digenic RP in combination with certain heterozygous mutations in peripherin-2. The mechanisms underlying the differential role of peripherin-2 and Rom-1 in RP pathophysiology remained elusive so far. Here, focusing on two adRP-linked peripherin-2 mutants, P210L and C214S, we analyzed the binding characteristics, protein assembly, and rod OS targeting of wild type (perWT), mutant peripherin-2 (perMT), or Rom-1 complexes, which can be formed in patients heterozygous for peripherin-2 mutations. Both mutants are misfolded and lead to decreased binding to perWT and Rom-1. Furthermore, both mutants are preferentially forming non-covalent perMT-perMT, perWT-perMT, and Rom-1-perMT dimers. However, only perWT-perMT, but not perMT-perMT or Rom-1-perMT complexes could be targeted to murine rod OS. Our study provides first evidence that non-covalent perWT-perMT dimers can be targeted to rod OS. Finally, our study unravels unexpected opposing roles of perWT and Rom-1 in rod OS targeting of adRP-linked peripherin-2 mutants and suggests a new treatment strategy for the affected individuals.


Subject(s)
Peripherins/genetics , Retinitis Pigmentosa/genetics , Rod Cell Outer Segment/metabolism , Tetraspanins/genetics , Animals , COS Cells , Chlorocebus aethiops , Eye Proteins , Humans , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Mice , Mutation , Peripherins/metabolism , Protein Binding , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Rod Cell Outer Segment/pathology , Tetraspanins/metabolism
7.
Nat Protoc ; 11(12): 2470-2498, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27831569

ABSTRACT

Förster resonance energy transfer (FRET) is a versatile method for analyzing protein-protein interactions within living cells. This protocol describes a nondestructive live-cell FRET assay for robust quantification of relative binding affinities for protein-protein interactions. Unlike other approaches, our method correlates the measured FRET efficiencies to relative concentration of interacting proteins to determine binding isotherms while including collisional FRET corrections. We detail how to assemble and calibrate the equipment using experimental and theoretical procedures. A step-by-step protocol is given for sample preparation, data acquisition and analysis. The method uses relatively inexpensive and widely available equipment and can be performed with minimal training. Implementation of the imaging setup requires up to 1 week, and sample preparation takes ∼1-3 d. An individual FRET experiment, including control measurements, can be completed within 4-6 h, with data analysis requiring an additional 1-3 h.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Two-Hybrid System Techniques , Cell Survival , Fluorescence Resonance Energy Transfer/instrumentation , HEK293 Cells , Humans , Two-Hybrid System Techniques/instrumentation
8.
Front Neurosci ; 10: 356, 2016.
Article in English | MEDLINE | ID: mdl-27516733

ABSTRACT

Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types.

9.
Hum Mol Genet ; 25(12): 2367-2377, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27033727

ABSTRACT

Peripherin-2 is a glycomembrane protein exclusively expressed in the light-sensing compartments of rod and cone photoreceptors designated as outer segments (OS). Mutations in peripherin-2 are associated with degenerative retinal diseases either affecting rod or cone photoreceptors. While peripherin-2 has been extensively studied in rods, there is only little information on its supramolecular organization and function in cones. Recently, we have demonstrated that peripherin-2 interacts with the light detector rhodopsin in OS of rods. It remains unclear, however, if peripherin-2 also binds to cone opsins. Here, using a combination of co-immunoprecipitation analyses, transmission electron microscopy (TEM)-based immunolabeling experiments, and quantitative fluorescence resonance energy transfer (FRET) measurements in cone OS of wild type mice, we demonstrate that peripherin-2 binds to both, S-opsin and M-opsin. However, FRET-based quantification of the respective interactions indicated significantly less stringent binding of peripherin-2 to S-opsin compared to its interaction with M-opsin. Subsequent TEM-studies also showed less co-localization of peripherin-2 and S-opsin in cone OS compared to peripherin-2 and M-opsin. Furthermore, quantitative FRET analysis in acutely isolated cone OS revealed that the cone degeneration-causing V268I mutation in peripherin-2 selectively reduced binding to M-opsin without affecting the peripherin-2 interaction to S-opsin or rhodopsin. The differential binding of peripherin-2 to cone opsins and the mutant-specific interference with the peripherin-2/M-opsin binding points to a novel role of peripherin-2 in cones and might contribute to understanding the differential penetrance of certain peripherin-2 mutations in rods and cones. Finally, our results provide a proof-of-principle for quantitative FRET measurements of protein-protein interactions in cone OS.


Subject(s)
Antigens, Neoplasm/metabolism , Cone Opsins/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/genetics , Animals , Antigens, Neoplasm/genetics , Cone Opsins/genetics , Fluorescence Resonance Energy Transfer , Humans , Mice , Microscopy, Electron, Transmission , Mutation , Protein Binding , Retina/metabolism , Retina/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/pathology , Rhodopsin/genetics , Rhodopsin/metabolism
10.
Hum Mol Genet ; 23(22): 5989-97, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-24963162

ABSTRACT

Outer segments (OSs) of rod photoreceptors are cellular compartments specialized in the conversion of light into electrical signals. This process relies on the light-triggered change in the intracellular levels of cyclic guanosine monophosphate, which in turn controls the activity of cyclic nucleotide-gated (CNG) channels in the rod OS plasma membrane. The rod CNG channel is a macromolecular complex that in its core harbors the ion-conducting CNGA1 and CNGB1a subunits. To identify additional proteins of the complex that interact with the CNGB1a core subunit, we applied affinity purification of mouse retinal proteins followed by mass spectrometry. In combination with in vitro and in vivo co-immunoprecipitation and fluorescence resonance energy transfer (FRET), we found that the tetraspanin peripherin-2 links CNGB1a to the light-detector rhodopsin. Using immunoelectron microscopy, we found that this peripherin-2/rhodopsin/CNG channel complex localizes to the contact region between the disk rims and the plasma membrane. FRET measurements revealed that the fourth transmembrane domain (TM4) of peripherin-2 is required for the interaction with rhodopsin. Quantitatively, the binding affinity of the peripherin-2/rhodopsin interaction was in a similar range as that observed for rhodopsin dimers. Finally, we demonstrate that the p.G266D retinitis pigmentosa mutation found within TM4 selectively abolishes the binding of peripherin-2 to rhodopsin. This finding suggests that the specific disruption of the rhodopsin/peripherin-2 interaction in the p.G266D mutant might contribute to the pathophysiology in affected persons.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/metabolism , Nerve Tissue Proteins/metabolism , Peripherins/metabolism , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/metabolism , Rhodopsin/metabolism , Animals , Cyclic Nucleotide-Gated Cation Channels/genetics , Humans , Mice , Nerve Tissue Proteins/genetics , Peripherins/genetics , Protein Binding , Protein Structure, Tertiary , Retina/metabolism , Retinitis Pigmentosa/genetics , Rhodopsin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...