Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
J Neuroimmune Pharmacol ; 16(4): 785-795, 2021 12.
Article in English | MEDLINE | ID: mdl-34435263

ABSTRACT

Treatment of HIV-infected patients with antiretroviral therapy (ART) has effectively suppressed viral replication; however, the central nervous system is still a major target and reservoir of the virus leading to the possible development of HIV-associated neurocognitive disorders (HAND). Furthermore, a hallmark feature of HAND is the disruption of the blood-brain barrier that leads to loss of tight junction protein (TJP) complexes. Extracellular vesicles (EVs), released by every cell type in the body, occur in greater quantities in response to cellular activation or injury. We have found that inflammatory insults activate brain endothelial cells (EC) and induce the release of EVs containing TJPs such as Occludin. We thus hypothesized that HIV infection and unresolved neuroinflammation will result in the release of brain-EC derived EVs. Herein, our results show elevated levels of brain-EC EVs in a humanized mouse model of HIV infection. Furthermore, while ART reduced brain-EC EVs, it was unable to completely resolve increased vesicles detectable in the blood. In addition to inflammatory insults, HIV-1 viral proteins (Tat and gp120) increased the release of Occludin + vesicles from human brain microvasculature ECs. This increase in vesicle release could be prevented by knock-down of the small GTPase ARF6. ARF6 has been shown to regulate EV biogenesis in other cell types, and we provide further evidence for the involvement of ARF6 in brain EC derived EVs. Overall, this study offers insight into the process of brain vascular remodeling (via EVs) in the setting of neuroinflammation and thus provides possibilities for biomarker monitoring and targeting of ARF6.


Subject(s)
HIV Infections , HIV-1 , Animals , Brain , Disease Models, Animal , Endothelial Cells , Humans , Inflammation , Mice , Neuroinflammatory Diseases
3.
J Neuroinflammation ; 18(1): 63, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33648543

ABSTRACT

BACKGROUND: Synthetic cathinones are a category of psychostimulants belonging to the growing number of designer drugs also known as "Novel Psychoactive Substances" (NPS). In recent years, NPS have gained popularity in the recreational drug market due to their amphetamine-like stimulant effects, low cost, ease of availability, and lack of detection by conventional toxicology screening. All these factors have led to an increase in NPS substance abuse among the young adults, followed by spike of overdose-related fatalities and adverse effects, severe neurotoxicity, and cerebral vascular complications. Much remains unknown about how synthetic cathinones negatively affect the CNS and the status of the blood-brain barrier (BBB). METHODS: We used in vitro models of the BBB and primary human brain microvascular endothelial cells (hBMVEC) to investigate the effects of the synthetic cathinone, 4-methyl methcathinone (mephedrone), on BBB properties. RESULTS: We showed that mephedrone exposure resulted in the loss of barrier properties and endothelial dysfunction of primary hBMVEC. Increased permeability and decreased transendothelial electrical resistance of the endothelial barrier were attributed to changes in key proteins involved in the tight junction formation. Elevated expression of matrix metalloproteinases, angiogenic growth factors, and inflammatory cytokines can be explained by TLR-4-dependent activation of NF-κB signaling. CONCLUSIONS: In this first characterization of the effects of a synthetic cathinone on human brain endothelial cells, it appears clear that mephedrone-induced damage of the BBB is not limited by the disruption of the barrier properties but also include endothelial activation and inflammation. This may especially be important in comorbid situations of mephedrone abuse and HIV-1 infections. In this context, mephedrone could negatively affect HIV-1 neuroinvasion and NeuroAIDS progression.


Subject(s)
Blood-Brain Barrier/drug effects , Designer Drugs/pharmacology , Endothelial Cells/drug effects , Methamphetamine/analogs & derivatives , Psychotropic Drugs/pharmacology , Cells, Cultured , Humans , Methamphetamine/pharmacology
4.
J Cereb Blood Flow Metab ; 41(9): 2242-2255, 2021 09.
Article in English | MEDLINE | ID: mdl-33583260

ABSTRACT

Neuregulin (NRG)1 - ErbB receptor signaling has been shown to play an important role in the biological function of peripheral microvascular endothelial cells. However, little is known about how NRG1/ErbB signaling impacts brain endothelial function and blood-brain barrier (BBB) properties. NRG1/ErbB pathways are affected by brain injury; when brain trauma was induced in mice in a controlled cortical impact model, endothelial ErbB3 gene expression was reduced to a greater extent than that of other NRG1 receptors. This finding suggests that ErbB3-mediated processes may be significantly compromised after injury, and that an understanding of ErbB3 function would be important in the of study of endothelial biology in the healthy and injured brain. Towards this goal, cultured brain microvascular endothelial cells were transfected with siRNA to ErbB3, resulting in alterations in F-actin organization and microtubule assembly, cell morphology, migration and angiogenic processes. Importantly, a significant increase in barrier permeability was observed when ErbB3 was downregulated, suggesting ErbB3 involvement in BBB regulation. Overall, these results indicate that neuregulin-1/ErbB3 signaling is intricately connected with the cytoskeletal processes of the brain endothelium and contributes to morphological and angiogenic changes as well as to BBB integrity.


Subject(s)
Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Vascular Remodeling/physiology , Animals , Biological Transport , Humans , Male , Mice , Transfection
5.
Neurobiol Dis ; 146: 105131, 2020 12.
Article in English | MEDLINE | ID: mdl-33053430

ABSTRACT

As researchers across the globe have focused their attention on understanding SARS-CoV-2, the picture that is emerging is that of a virus that has serious effects on the vasculature in multiple organ systems including the cerebral vasculature. Observed effects on the central nervous system include neurological symptoms (headache, nausea, dizziness), fatal microclot formation and in rare cases encephalitis. However, our understanding of how the virus causes these mild to severe neurological symptoms and how the cerebral vasculature is impacted remains unclear. Thus, the results presented in this report explored whether deleterious outcomes from the SARS-CoV-2 viral spike protein on primary human brain microvascular endothelial cells (hBMVECs) could be observed. The spike protein, which plays a key role in receptor recognition, is formed by the S1 subunit containing a receptor binding domain (RBD) and the S2 subunit. First, using postmortem brain tissue, we show that the angiotensin converting enzyme 2 or ACE2 (a known binding target for the SARS-CoV-2 spike protein), is ubiquitously expressed throughout various vessel calibers in the frontal cortex. Moreover, ACE2 expression was upregulated in cases of hypertension and dementia. ACE2 was also detectable in primary hBMVECs maintained under cell culture conditions. Analysis of cell viability revealed that neither the S1, S2 or a truncated form of the S1 containing only the RBD had minimal effects on hBMVEC viability within a 48 h exposure window. Introduction of spike proteins to invitro models of the blood-brain barrier (BBB) showed significant changes to barrier properties. Key to our findings is the demonstration that S1 promotes loss of barrier integrity in an advanced 3D microfluidic model of the human BBB, a platform that more closely resembles the physiological conditions at this CNS interface. Evidence provided suggests that the SARS-CoV-2 spike proteins trigger a pro-inflammatory response on brain endothelial cells that may contribute to an altered state of BBB function. Together, these results are the first to show the direct impact that the SARS-CoV-2 spike protein could have on brain endothelial cells; thereby offering a plausible explanation for the neurological consequences seen in COVID-19 patients.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Blood-Brain Barrier/metabolism , Capillary Permeability/physiology , Endothelial Cells/metabolism , Inflammation/metabolism , Matrix Metalloproteinases/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/physiology , Blood-Brain Barrier/drug effects , COVID-19 , Capillary Permeability/drug effects , Cell Adhesion Molecules/drug effects , Cell Adhesion Molecules/metabolism , Cell Survival/drug effects , Dementia/metabolism , Electric Impedance , Endothelial Cells/drug effects , Frontal Lobe/metabolism , Humans , Hypertension/metabolism , In Vitro Techniques , Intercellular Junctions/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lab-On-A-Chip Devices , Matrix Metalloproteinases/drug effects , Primary Cell Culture , Protein Domains , Protein Subunits/metabolism , Protein Subunits/pharmacology , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Spike Glycoprotein, Coronavirus/pharmacology
6.
bioRxiv ; 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32587958

ABSTRACT

As researchers across the globe have focused their attention on understanding SARS-CoV-2, the picture that is emerging is that of a virus that has serious effects on the vasculature in multiple organ systems including the cerebral vasculature. Observed effects on the central nervous system includes neurological symptoms (headache, nausea, dizziness), fatal microclot formation and in rare cases encephalitis. However, our understanding of how the virus causes these mild to severe neurological symptoms and how the cerebral vasculature is impacted remains unclear. Thus, the results presented in this report explored whether deleterious outcomes from the SARS-COV-2 viral spike protein on primary human brain microvascular endothelial cells (hBMVECs) could be observed. First, using postmortem brain tissue, we show that the angiotensin converting enzyme 2 or ACE2 (a known binding target for the SARS-CoV-2 spike protein), is expressed throughout various caliber vessels in the frontal cortex. Additionally, ACE2 was also detectable in primary human brain microvascular endothelial (hBMVEC) maintained under cell culture conditions. Analysis for cell viability revealed that neither the S1, S2 or a truncated form of the S1 containing only the RBD had minimal effects on hBMVEC viability within a 48hr exposure window. However, when the viral spike proteins were introduced into model systems that recapitulate the essential features of the Blood-Brain Barrier (BBB), breach to the barrier was evident in various degrees depending on the spike protein subunit tested. Key to our findings is the demonstration that S1 promotes loss of barrier integrity in an advanced 3D microfluid model of the human BBB, a platform that most closely resembles the human physiological conditions at this CNS interface. Subsequent analysis also showed the ability for SARS-CoV-2 spike proteins to trigger a pro-inflammatory response on brain endothelial cells that may contribute to an altered state of BBB function. Together, these results are the first to show the direct impact that the SARS-CoV-2 spike protein could have on brain endothelial cells; thereby offering a plausible explanation for the neurological consequences seen in COVID-19 patients.

7.
Infect Immun ; 87(1)2019 01.
Article in English | MEDLINE | ID: mdl-30297526

ABSTRACT

Rickettsiae can cause life-threatening infections in humans. Macrophages are one of the initial targets for rickettsiae after inoculation by ticks. However, it remains poorly understood how rickettsiae remain free in macrophages prior to establishing their infection in microvascular endothelial cells. Here, we demonstrated that the concentration of Rickettsia australis was significantly greater in infected tissues of Atg5flox/flox mice than in the counterparts of Atg5flox/flox Lyz-Cre mice, in association with a reduced level of interleukin-1ß (IL-1ß) in serum. The greater concentration of R. australis in Atg5flox/flox bone marrow-derived macrophages (BMMs) than in Atg5flox/flox Lyz-Cre BMMs in vitro was abolished by exogenous treatment with recombinant IL-1ß. Rickettsia australis induced significantly increased levels of light chain 3 (LC3) form II (LC3-II) and LC3 puncta in Atg5-competent BMMs but not in Atg5-deficient BMMs, while no p62 turnover was observed. Further analysis found the colocalization of LC3 with a small portion of R. australis and Rickettsia-containing double-membrane-bound vacuoles in the BMMs of B6 mice. Moreover, treatment with rapamycin significantly increased the concentrations of R. australis in B6 BMMs compared to those in the untreated B6 BMM controls. Taken together, our results demonstrate that Atg5 favors R. australis infection in mouse macrophages in association with a suppressed level of IL-1ß production but not active autophagy flux. These data highlight the contribution of Atg5 in macrophages to the pathogenesis of rickettsial diseases.


Subject(s)
Autophagy-Related Protein 5/metabolism , Host-Pathogen Interactions , Macrophages/metabolism , Macrophages/microbiology , Rickettsia/growth & development , Animals , Cells, Cultured , Female , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Spotted Fever Group Rickettsiosis
8.
J Biol Chem ; 288(27): 19370-85, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23640885

ABSTRACT

The FGF14 protein controls biophysical properties and subcellular distribution of neuronal voltage-gated Na(+) (Nav) channels through direct binding to the channel C terminus. To gain insights into the dynamic regulation of this protein/protein interaction complex, we employed the split luciferase complementation assay to screen a small molecule library of kinase inhibitors against the FGF14·Nav1.6 channel complex and identified inhibitors of GSK3 as hits. Through a combination of a luminescence-based counter-screening, co-immunoprecipitation, patch clamp electrophysiology, and quantitative confocal immunofluorescence, we demonstrate that inhibition of GSK3 reduces the assembly of the FGF14·Nav channel complex, modifies FGF14-dependent regulation of Na(+) currents, and induces dissociation and subcellular redistribution of the native FGF14·Nav channel complex in hippocampal neurons. These results further emphasize the role of FGF14 as a critical component of the Nav channel macromolecular complex, providing evidence for a novel GSK3-dependent signaling pathway that might control excitability through specific protein/protein interactions.


Subject(s)
Fibroblast Growth Factors/metabolism , Glycogen Synthase Kinase 3/metabolism , Hippocampus/metabolism , Multiprotein Complexes/metabolism , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Animals , Enzyme Inhibitors/pharmacology , Fibroblast Growth Factors/genetics , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , HEK293 Cells , Hippocampus/cytology , Humans , Mice , Mice, Knockout , Multiprotein Complexes/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Neurons/cytology , Rats , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...