Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Food Prot ; 87(7): 100294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718985

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) are associated with severe infections including hemorrhagic colitis and hemolytic uremic syndrome in humans. Ruminants are known as reservoirs of STEC; however, no data are available on STEC in ruminants in Mongolia, where more than 5 million cattle and 25 million sheep are raised. To disclose the existence and characteristics of STEC in Mongolia, in this study, we isolated and characterized STEC from cattle in Mongolia. We collected 350 rectal swabs of cattle from 30 farms near Ulaanbaatar city and isolated 45 STEC from 21 farms. Rectal swabs were precultured with modified Escherichia coli broth and then inoculated to Cefixime-Tellurite Sorbitol MacConkey agar plate and/or CHROMagar STEC agar plate for the isolation of STEC. The isolation ratios in each farm were from 0% to 40%. Multiplex PCR for the estimation of O- and H-serotypes identified 12 O-genotypes (Og-types) and 11 H-genotypes (Hg-types) from 45 isolates; however, Og-types of 19 isolates could not be determined. Stx gene subtyping by PCR identified 2 stx1 subtypes (1a and 1c) and 4 stx2 subtypes (2a, 2c, 2d, and 2g). Forty-five isolates were divided into 21 different groups based on the Og- and Hg-types, stx gene subtypes and the existence of virulence factors, ehxA, eae, and saa, which includes several major serotypes associated with human illness such as O26:H11 and O157:H7. The most dominant isolate, OgUT:H19 [stx1a (+), stx2a (+), ehxA (+) and saa (+)], was isolated from eight farms. This is the first report on the characterization of STEC in cattle in Mongolia, and the results suggest the importance of further monitoring of STEC contamination in the food chains as well as STEC infection in humans.


Subject(s)
Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Animals , Cattle , Mongolia , Shiga-Toxigenic Escherichia coli/isolation & purification , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Humans , Genotype
2.
Poult Sci ; 100(3): 100916, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33518344

ABSTRACT

There has been no report on the prevalence of Campylobacter spp. in farm animals in Mongolia. To uncover the prevalence of Campylobacter spp. in chickens in Mongolia and their antimicrobial resistance, in this study, we isolated and characterized Campylobacter spp. from chickens in Mongolia. We collected 71 cloacal swabs of chickens from 5 farms including 4 layer farms and one broiler farm near Ulaanbaatar city and isolated 25 Campylobacter jejuni and 6 Campylobacter coli isolates. All isolates were resistant to tetracycline, and 3 C. coli isolates were resistant to erythromycin. The C. coli isolates possessed either the erm(B) gene or nucleotide substitution at nt 2,075 of 23S rDNA, both of which are known to be associated with erythromycin resistance. Sixteen of the 31 C. jejuni/C. coli isolates (51.6%) were resistant to nalidixic acid and fluoroquinolones. All the fluoroquinolone-resistant isolates possessed amino acid substitution from threonine to isoleucine at codon 86 (nucleotide substitution: ACA to ATA). Multilocus sequence typing and phylogenetic analyses showed a variation in C. jejuni/C. coli in chickens in Mongolia. In addition, some of the C. jejuni isolates seemed to be phylogenetically close to isolates in Asian and Oceanian countries. This is the first report on the characterization of antimicrobial resistance of Campylobacter spp. in farm animals in Mongolia and is valuable for implementation of measures for a prudent use of antimicrobials in farm animals.


Subject(s)
Anti-Infective Agents , Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Campylobacter/genetics , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Campylobacter coli/genetics , Chickens , Drug Resistance, Bacterial , Microbial Sensitivity Tests/veterinary , Mongolia/epidemiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...