Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 22(13): 2643-2653, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38456317

ABSTRACT

Thienylallylamines, readily accessible from the corresponding thienyl aldehydes, react with maleic and trifluoromethylmaleic anhydrides leading to the formation of acids with a thieno[2,3-f]isoindole core. The reaction sequence involves two successive steps: acylation of the nitrogen atom of the initial allylamine and the intramolecular Diels-Alder vinylarene (IMDAV) reaction. The scope and limitations of the proposed method were thoroughly investigated. It has been revealed with the aid of X-ray analysis and DFT calculations that the key step, the IMDAV reaction, proceeds through an exo-transition state, giving rise to the exclusive formation of a single diastereomer of the target heterocycle. The obtained functionally substituted thieno[2,3-f]isoindole carboxylic acids are potentially useful substrates for further transformations and bioscreening. The antimicrobial evaluation of the obtained compounds revealed that 1-oxo-2-(3-(trifluoromethyl)phenyl)hexahydrobenzo[4,5]thieno[2,3-f]isoindole-10-carboxylic acid is the most active sample in the synthesized library. It exhibits antibacterial activity against sensitive strains of Gram-positive bacteria, including S. aureus, Enterococcus faecium, Bacillus cereus, and Micrococcus luteus, as well as the Gram-negative bacteria E. coli and Pseudomonas fluorescens, with MIC values ranging from 4 to 64 µg mL-1. 9-Oxo-8-phenyloctahydronaphtho[2,1-d]thieno[2,3-f]isoindole-10-carboxylic acid showed antifungal activity against yeast culture C. albicans with a MIC value of 32 µM.


Subject(s)
Escherichia coli , Staphylococcus aureus , Microbial Sensitivity Tests , Anti-Bacterial Agents/chemistry , Carboxylic Acids , Isoindoles
2.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35215231

ABSTRACT

The antimicrobial activity and toxicity of three novel synthetic antibacterial agents containing tris(1H-indol-3-yl)methylium fragment were studied in vitro and in vivo. All compounds in vitro revealed high activity (minimal inhibitory concentration (MIC) 0.13-1.0 µg/mL) against bacteria that were either sensitive or resistant to antibiotics, including multidrug-resistant clinical isolates. The derivatives combining high antimicrobial activity with relatively low cytotoxicity against human donor fibroblasts HPF-hTERT were subjected to further testing on mice. In vivo they revealed fairly good tolerance and relatively low toxicity. Acute toxicity was evaluated, and the main indicators of toxicity, including LD50 and LD10, were determined. A study of compounds in vivo showed their efficiency in the model of staphylococcal sepsis in mice. The efficiency of compounds may be due to the ability of indolylmethylium salts to form pores in the cytoplasmic membrane of microbial cells and thereby facilitate the penetration of molecules into the pathogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...