Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 47(6): 2127-2145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38419355

ABSTRACT

Rhizosphere microbial community assembly results from microbe-microbe-plant interactions mediated by small molecules of plant and microbial origin. Studies with Arabidopsis thaliana have indicated a critical role of glucosinolates in shaping the root and/or rhizosphere microbial community, likely through breakdown products produced by plant or microbial myrosinases inside or outside of the root. Plant nitrile-specifier proteins (NSPs) promote the formation of nitriles at the expense of isothiocyanates upon glucosinolate hydrolysis with unknown consequences for microbial colonisation of roots and rhizosphere. Here, we generated the A. thaliana triple mutant nsp134 devoid of nitrile formation in root homogenates. Using this line and mutants lacking aliphatic or indole glucosinolate biosynthesis pathways or both, we found bacterial/archaeal alpha-diversity of the rhizosphere to be affected only by the ability to produce aliphatic glucosinolates. In contrast, bacterial/archaeal community composition depended on functional root NSPs as well as on pathways of aliphatic and indole glucosinolate biosynthesis. Effects of NSP deficiency were strikingly distinct from those of impaired glucosinolate biosynthesis. Our results demonstrate that rhizosphere microbial community assembly depends on functional pathways of both glucosinolate biosynthesis and breakdown in support of the hypothesis that glucosinolate hydrolysis by myrosinases and NSPs happens before secretion of products to the rhizosphere.


Subject(s)
Arabidopsis , Archaea , Bacteria , Glucosinolates , Plant Roots , Rhizosphere , Glucosinolates/metabolism , Glucosinolates/biosynthesis , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Bacteria/metabolism , Bacteria/genetics , Archaea/metabolism , Archaea/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Mutation , Nitriles/metabolism
2.
Front Microbiol ; 13: 830905, 2022.
Article in English | MEDLINE | ID: mdl-35685930

ABSTRACT

Beneficial bacteria in the rhizosphere are known to trigger faster and stronger plant immune responses to biotic and abiotic stressors. In the present study, we aimed to test the hypothesis that a rhizosphere microbiome transplant (RMT) may improve the immune response and reduce the disease rates of barley (Hordeum vulgare). This hypothesis was tested in a greenhouse system with the powdery mildew-causing fungus Blumeria graminis f. sp. hordei (Bgh). Detached rhizosphere microbiome from barley grown in a field soil was transplanted to barley seedlings grown in potting soil with reduced microbial diversity. Saline-treated plants served as control. At the three-leaf stage, barley was infected with Bgh. Decreased susceptibility to Bgh was observed for barley treated with the RMT as displayed by lower Bgh pustule counts in a detached leaf assay. A trend toward enhanced relative transcript abundances of the defense-related genes PR1b and PR17b was observed in leaves, 24 h after the Bgh challenge, when compared to the control. Moreover, 10 days after the Bgh challenge, the barley rhizosphere microbiome was harvested and analyzed by sequencing of 16S rRNA gene amplicons. The microbial community composition was significantly influenced by the RMT and displayed higher microbial diversity compared to the control. Furthermore, microbial beta-diversity and predicted functional profiles revealed a treatment-dependent clustering. Bacterial isolates from the RMT showed in vitro plant beneficial traits related to induced resistance. Our results showed that transplantation of a rhizosphere microbiome could be a sustainable strategy to improve the health of plants grown in potting soil with low microbial diversity under greenhouse conditions.

3.
Environ Microbiome ; 16(1): 20, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34711269

ABSTRACT

BACKGROUND: Bacteria associated with plants can enhance the plants' growth and resistance against phytopathogens. Today, growers aim to reduce the use of mineral fertilizers and pesticides. Since phytopathogens cause severe yield losses in crop production systems, biological alternatives gain more attention. Plant and also seed endophytes have the potential to influence the plant, especially seed-borne bacteria may express their beneficiary impact at initial plant developmental stages. In the current study, we assessed the endophytic seed microbiome of seven genetically diverse barley accessions by 16S rRNA gene amplicon sequencing and verified the in vitro plant beneficial potential of isolated seed endophytes. Furthermore, we investigated the impact of the barley genotype and its seed microbiome on the rhizosphere microbiome at an early growth stage by 16S rRNA gene amplicon sequencing. RESULTS: The plant genotype displayed a significant impact on the microbiota in both barley seed and rhizosphere. Consequently, the microbial alpha- and beta-diversity of the endophytic seed microbiome was highly influenced by the genotype. Interestingly, no correlation was observed between the endophytic seed microbiome and the single nucleotide polymorphisms of the seven genotypes. Unclassified members of Enterobacteriaceae were by far most dominant. Other abundant genera in the seed microbiome belonged to Curtobacterium, Paenibacillus, Pantoea, Sanguibacter and Saccharibacillus. Endophytes isolated from barley seeds were affiliated to dominant genera of the core seed microbiome, based on their 16S rRNA gene sequence. Most of these endophytic isolates produced in vitro plant beneficial secondary metabolites known to induce plant resistance. CONCLUSION: Although barley accessions representing high genetic diversity displayed a genotype-dependent endophytic seed microbiome, a core seed microbiome with high relative abundances was identified. Endophytic isolates were affiliated to members of the core seed microbiome and many of them showed plant beneficial properties. We propose therefore that new breeding strategies should consider genotypes with high abundance of beneficial microbes.

4.
FEMS Microbiol Ecol ; 97(3)2021 03 08.
Article in English | MEDLINE | ID: mdl-33544837

ABSTRACT

Long-term agricultural practices are assumed to shape the rhizosphere microbiome of crops with implications for plant health. In a long-term field experiment, we investigated the effect of different tillage and fertilization practices on soil and barley rhizosphere microbial communities by means of amplicon sequencing of 16S rRNA gene fragments from total community DNA. Differences in the microbial community composition depending on the tillage practice, but not the fertilization intensity were revealed. To examine whether these soil and rhizosphere microbiome differences influence the plant defense response, barley (cultivar Golden Promise) was grown in field or standard potting soil under greenhouse conditions and challenged with Blumeria graminis f. sp. hordei (Bgh). Amplicon sequence analysis showed that preceding tillage practice, but also aboveground Bgh challenge significantly influenced the microbial community composition. Expression of plant defense-related genes PR1b and PR17b was higher in challenged compared to unchallenged plants. The Bgh infection rates were strikingly lower for barley grown in field soil compared to potting soil. Although previous agricultural management shaped the rhizosphere microbiome, no differences in plant health were observed. We propose therefore that the management-independent higher microbial diversity of field soils compared to potting soils contributed to the low infection rates of barley.


Subject(s)
Hordeum , Microbiota , Ascomycota , Plant Diseases , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil
5.
Curr Issues Mol Biol ; 30: 17-38, 2019.
Article in English | MEDLINE | ID: mdl-30070649

ABSTRACT

Plants are colonized by diverse microorganisms, which may positively or negatively influence the plant fitness. The positive impact includes nutrient acquisition, enhancement of resistance to biotic and abiotic stresses, both important factors for plant growth and survival, while plant pathogenic bacteria can cause diseases. Plant pathogens are adapted to negate or evade plant defense mechanisms, e.g. by the injection of effector proteins into the host cells or by avoiding the recognition by the host. Plasmids play an important role in the rapid bacterial adaptation to stresses and changing environmental conditions. In the plant environment, plasmids can further provide a selective advantage for the host bacteria, e.g. by carrying genes encoding metabolic pathways, metal and antibiotic resistances, or pathogenicity-related genes. However, we are only beginning to understand the role of mobile genetic elements and horizontal gene transfer for plant-associated bacteria. In this review, we aim to provide a short update on what is known about plasmids and horizontal gene transfer of plant associated bacteria and their role in plant-bacteria interactions. Furthermore, we discuss tools available to study the plant-associated mobilome, its transferability, and its bacterial hosts.


Subject(s)
Bacterial Physiological Phenomena , Plant Physiological Phenomena , Plasmids/genetics , Symbiosis , Endophytes , Gene Transfer, Horizontal , Host-Pathogen Interactions , Microbiota , Plant Diseases/microbiology , Rhizosphere
SELECTION OF CITATIONS
SEARCH DETAIL
...