Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Oncol ; 14: 1304690, 2024.
Article in English | MEDLINE | ID: mdl-38634051

ABSTRACT

The main objective of the National Project for Research and Incidence of Childhood Leukemias is to reduce early mortality rates for these neoplasms in the vulnerable regions of Mexico. This project was conducted in the states of Oaxaca, Puebla, and Tlaxcala. A key strategy of the project is the implementation of an effective roadmap to ensure that leukemia patients are the target of maximum benefit of interdisciplinary collaboration between researchers, clinicians, surveyors, and laboratories. This strategy guarantees the comprehensive management of diagnosis and follow-up samples of pediatric patients with leukemia, centralizing, managing, and analyzing the information collected. Additionally, it allows for a precise diagnosis and monitoring of the disease through immunophenotype and measurable residual disease (MRD) studies, enhancing research and supporting informed clinical decisions for the first time in these regions through a population-based study. This initiative has significantly improved the diagnostic capacity of leukemia in girls, boys, and adolescents in the regions of Oaxaca, Puebla, and Tlaxcala, providing comprehensive, high-quality care with full coverage in the region. Likewise, it has strengthened collaboration between health institutions, researchers, and professionals in the sector, which contributes to reducing the impact of the disease on the community.

2.
Front Oncol ; 14: 1304263, 2024.
Article in English | MEDLINE | ID: mdl-38444682

ABSTRACT

Introduction: Acute leukemias (AL) are the main types of cancer in children worldwide. In Mexico, they represent one of the main causes of death in children under 20 years of age. Most of the studies on the incidence of AL in Mexico have been developed in the urban context of Greater Mexico City and no previous studies have been conducted in the central-south of the country through a population-based study. The aim of the present work was to identify the general and specific incidence rates of pediatric AL in three states of the south-central region of Mexico considered as some of the marginalized populations of Mexico (Puebla, Tlaxcala, and Oaxaca). Methods: A population-based study was conducted. Children aged less than 20 years, resident in these states, and newly diagnosed with AL in public/private hospitals during the period 2021-2022 were identified. Crude incidence rates (cIR), standardized incidence rates (ASIRw), and incidence rates by state subregions (ASIRsr) were calculated. Rates were calculated using the direct and indirect method and reported per million children under 20 years of age. In addition, specific rates were calculated by age group, sex, leukemia subtype, and immunophenotype. Results: A total of 388 cases with AL were registered. In the three states, the ASIRw for AL was 51.5 cases per million (0-14 years); in Puebla, it was 53.2, Tlaxcala 54.7, and Oaxaca de 47.7. In the age group between 0-19 years, the ASIRw were 44.3, 46.4, 48.2, and 49.6, in Puebla, Tlaxcala, and Oaxaca, respectively. B-cell acute lymphoblastic leukemia was the most common subtype across the three states. Conclusion: The incidence of childhood AL in the central-south region of Mexico is within the range of rates reported in other populations of Latin American origin. Two incidence peaks were identified for lymphoblastic and myeloid leukemias. In addition, differences in the incidence of the disease were observed among state subregions which could be attributed to social factors linked to the ethnic origin of the inhabitants. Nonetheless, this hypothesis requires further investigation.

3.
Front Oncol ; 13: 1304662, 2023.
Article in English | MEDLINE | ID: mdl-38250553

ABSTRACT

Introduction: The decisive key to disease-free survival in B-cell precursor acute lymphoblastic leukemia in children, is the combination of diagnostic timeliness and treatment efficacy, guided by accurate patient risk stratification. Implementation of standardized and high-precision diagnostic/prognostic systems is particularly important in the most marginalized geographic areas in Mexico, where high numbers of the pediatric population resides and the highest relapse and early death rates due to acute leukemias are recorded even in those cases diagnosed as standard risk. Methods: By using a multidimensional and integrated analysis of the immunophenotype of leukemic cells, the immunological context and the tumor microenvironment, this study aim to capture the snapshot of acute leukemia at disease debut of a cohort of Mexican children from vulnerable regions in Puebla, Oaxaca and Tlaxcala and its potential use in risk stratification. Results and discussion: Our findings highlight the existence of a distinct profile of ProB-ALL in children older than 10 years, which is associated with a six-fold increase in the risk of developing measurable residual disease (MRD). Along with the absence of CD34+ seminal cells for normal hematopoiesis, this ProB-ALL subtype exhibited several characteristics related to poor prognosis, including the high expression level of myeloid lineage markers such as MPO and CD33, as well as upregulation of CD19, CD34, CD24, CD20 and nuTdT. In contrast, it showed a trend towards decreased expression of CD9, CD81, CD123, CD13, CD15 and CD21. Of note, the mesenchymal stromal cell compartment constituting their leukemic niche in the bone marrow, displayed characteristics of potential suppressive microenvironment, such as the expression of Gal9 and IDO1, and the absence of the chemokine CXCL11. Accordingly, adaptive immunity components were poorly represented. Taken together, our results suggest, for the first time, that a biologically distinct subtype of ProB-ALL emerges in vulnerable adolescents, with a high risk of developing MRD. Rigorous research on potential enhancing factors, environmental or lifestyle, is crucial for its detection and prevention. The use of the reported profile for early risk stratification is suggested.

4.
MEDICC Rev ; 22(2): 14-18, 2020 04.
Article in English | MEDLINE | ID: mdl-32478700

ABSTRACT

The current pandemic has rocked the lives of human beings every-where in ways never imagined, forcing us to question where our civilization is headed. In this article, we explore and discuss scien-tifi c evidence that helps explain recent events in the context of the COVID-19 pandemic.COVID-19 is caused by infection with a zoonotic-origin novel virus, SARS-CoV-2, that is genetically close to two coronavirus types iso-lated in bats. The transmission dynamics to humans from the original and intermediary hosts remain poorly understood, but it is highly likely that the SARS-CoV-2 virus infected humans after undergoing an inter-species transfer from bats to an intermediate species, and from there to human beings. Crossing the species barrier is largely fostered by industrial-scale agricultural practices that simplify original ecosystem connections by reducing biodiversity, facilitating the emergence of new infectious diseases. The scientifi c community has played an exemplary role in responding to this global emergency, working to fi nd timely, relevant solutions for governments and society as a whole. We need to take this opportunity to promote a global and open science that delves into the interrelation-ships of the biological, environmental, social and economic dimen-sions of this and other diseases while questioning current modes of production and their impact on the environment, and thus on human health worldwide. Keywords: Coronavirus infections; communicable diseases; zoonoses; ecosystems; technology, industry, and agriculture; pandemics; global health; Mexico.


Subject(s)
Betacoronavirus , Biomedical Research , Coronavirus Infections/epidemiology , Internationality , Pandemics , Pneumonia, Viral/epidemiology , COVID-19 , Humans , SARS-CoV-2
5.
Toxics ; 6(3)2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30177602

ABSTRACT

During embryonic development, some hypoxia occurs due to incipient vascularization. Under hypoxic conditions, gene expression is mainly controlled by hypoxia-inducible factor 1 (HIF-1). The activity of this transcription factor can be altered by the exposure to a variety of compounds; among them is cadmium (Cd), a nephrotoxic heavy metal capable of crossing the placenta and reaching fetal kidneys. The goal of the study was to determine Cd effects on HIF-1 on embryonic kidneys. Pregnant Wistar rats were exposed to a mist of isotonic saline solution or CdCl2 (DDel = 1.48 mg Cd/kg/day), from gestational day (GD) 8 to 20. Embryonic kidneys were obtained on GD 21 for RNA and protein extraction. Results show that Cd exposure had no effect on HIF-1α and prolyl hydroxylase 2 protein levels, but it reduced HIF-1 DNA-binding ability, which was confirmed by a decrease in vascular endothelial growth factor (VEGF) mRNA levels. In contrast, the protein levels of VEGF were not changed, which suggests the activation of additional regulatory mechanisms of VEGF protein expression to ensure proper kidney development. In conclusion, Cd exposure decreases HIF-1-binding activity, posing a risk on renal fetal development.

6.
Toxicol Appl Pharmacol ; 352: 97-106, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29800643

ABSTRACT

Fluoride (F) is a toxicant widely distributed in the environment. Experimental studies have shown kidney toxicity from F exposure. However, co-exposure to arsenic (As) has not been considered, and epidemiological information remains limited. We evaluated the association between F exposure and urinary kidney injury biomarkers and assessed As co-exposure interactions. A cross-sectional study was conducted in 239 adults (18-77 years old) from three communities in Chihuahua, Mexico. Exposure to F was assessed in urine and drinking water, and As in urine samples. We evaluated the urinary concentrations of albumin (ALB), cystatin-C (Cys-C), kidney injury molecule 1 (KIM-1), clusterin (CLU), osteopontin (OPN), and trefoil factor 3 (TFF-3). The estimated glomerular filtration rate (eGFR) was calculated using serum creatinine (Creat) levels. We observed a positive correlation between water and urine F concentrations (ρ = 0.7419, p < 0.0001), with median values of 1.5 mg/L and 2 µg/mL, respectively, suggesting that drinking water was the main source of F exposure. The geometric mean of urinary As was 18.55 ng/mL, approximately 39% of the urine samples had As concentrations above the human biomonitoring value (15 ng/mL). Multiple linear regression models demonstrated a positive association between urinary F and ALB (ß = 0.56, p < 0.001), Cys-C (ß = 0.022, p = 0.001), KIM-1 (ß = 0.048, p = 0.008), OPN (ß = 0.38, p = 0.041), and eGFR (ß = 0.49, p = 0.03); however, CLU (ß = 0.07, p = 0.100) and TFF-3 (ß = 1.14, p = 0.115) did not show significant associations. No interaction with As exposure was observed. In conclusion, F exposure was related to the urinary excretion of early kidney injury biomarkers, supporting the hypothesis of the nephrotoxic role of F exposure.


Subject(s)
Arsenic/adverse effects , Environmental Exposure/adverse effects , Fluorides/adverse effects , Kidney Diseases/chemically induced , Kidney/drug effects , Water Pollutants, Chemical/adverse effects , Adolescent , Adult , Aged , Albuminuria/chemically induced , Albuminuria/diagnosis , Albuminuria/urine , Arsenic/urine , Biomarkers/urine , Clusterin/urine , Cross-Sectional Studies , Cystatin C/urine , Environmental Monitoring/methods , Female , Fluorides/urine , Glomerular Filtration Rate/drug effects , Hepatitis A Virus Cellular Receptor 1/analysis , Humans , Kidney/metabolism , Kidney/physiopathology , Kidney Diseases/diagnosis , Kidney Diseases/physiopathology , Kidney Diseases/urine , Male , Mexico , Middle Aged , Osteopontin/urine , Predictive Value of Tests , Risk Assessment , Trefoil Factor-3/urine , Water Pollutants, Chemical/urine , Young Adult
7.
Ann Glob Health ; 84(2): 257-273, 2018 07 27.
Article in English | MEDLINE | ID: mdl-30873793

ABSTRACT

BACKGROUND: Mexico is included in the list of countries with concurrent arsenic and fluoride contamination in drinking water. Most of the studies have been carried out in the adult population and very few in the child population. Urinary arsenic and urinary fluoride levels have been accepted as good biomarkers of exposure dose. The Biomonitoring Equivalents (BE) values are useful tools for health assessment using human biomonitoring data in relation to the exposure guidance values, but BE information for children is limited. METHODS: We conducted a systematic review of the reported levels of arsenic and fluoride in drinking water, urinary quantification of speciated arsenic (inorganic arsenic and its methylated metabolites), and urinary fluoride levels in child populations. For BE values, urinary arsenic and fluoride concentrations reported in Mexican child populations were revised discussing the influence of factors such as diet, use of dental products, sex, and metabolism. RESULTS: Approximately 0.5 and 6 million Mexican children up to 14 years of age drink water with arsenic levels over 10 µg/L and fluoride over 1.5 mg/L, respectively. Moreover, 40% of localities with arsenic levels higher than 10 µg/L also present concurrent fluoride exposure higher than 1.5 mgF/L. BE values based in urinary arsenic of 15 µg/L and urinary fluoride of 1.2 mg/L for the environmentally exposed child population are suggested. CONCLUSIONS: An actual risk map of Mexican children exposed to high levels of arsenic, fluoride, and both arsenic and fluoride in drinking water was generated. Mexican normativity for maximum contaminant level for arsenic and fluoride in drinking water should be adjusted and enforced to preserve health. BE should be used in child populations to investigate exposure.


Subject(s)
Arsenic/urine , Drinking Water , Fluorides/urine , Water Quality/standards , Child , Drinking Water/adverse effects , Drinking Water/analysis , Drinking Water/chemistry , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Exposure/prevention & control , Environmental Monitoring/methods , Environmental Monitoring/standards , Humans , Mexico/epidemiology , Risk Assessment , Water Pollutants, Chemical/urine
8.
J Appl Toxicol ; 36(2): 309-19, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26779593

ABSTRACT

Fluoride is an important groundwater contaminant, and more than 200 million people are exposed to high fluoride levels in drinking water, the major source of fluoride exposure. Exposure above 2 ppm of fluoride is associated with renal impairment in humans. In rats, moderate levels of fluoride induce kidney injury at early stages in which the glomerular filtration rate (GFR) is not altered. In the present study, we investigated if sub-nephrotoxic stimulus induced by fluoride might impact the response to a subsequent nephrotoxic treatment with gentamicin. Male Wistar rats (~21 days) were exposed to 0, 15 or 50 ppm of fluoride through drinking water during 40 days. Afer that, rats were co-exposed to gentamicin (40 mg kg(-1) day(-1), 7 days). Gentamicin induced a marked decrease in the GFR and an increase in urinary levels as well as the protein and mRNA expression of biomarkers of early kidney injury, such as Kim-1. Interestingly, gentamicin nephrotoxicity was less pronounced in groups previously exposed to fluoride than in the group only treated with gentamicin. Fluoride induced Hsp72, a cytoprotective molecule, which might have improved the response against gentamicin. Moreover, fluoride decreased the expression of megalin, a molecule necessary for internalization of gentamicin into the proximal tubule, potentially reducing gentamicin accumulation. The present results suggest that fluoride reduced gentamicin-induced nephrotoxicity by inducing a compensatory response carried out by Hsp72 and by decreasing gentamicin accumulation. These findings should not be interpreted to suggest that fluoride is a protective agent as megalin deficiency could lead to serious adverse effects on the kidney physiology.


Subject(s)
Fluorides/toxicity , Gentamicins/toxicity , Glomerular Filtration Rate/drug effects , Kidney Tubules, Proximal/drug effects , Kidney/drug effects , Renal Insufficiency/chemically induced , Animals , Male , Rats , Rats, Wistar
9.
Exp Toxicol Pathol ; 65(5): 661-5, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22901987

ABSTRACT

In a recent study, our group demonstrated that when peripheral blood mononuclear cells (PBMCs) were treated "in vitro" with p,p'-DDE, a DDT metabolite, an antioxidant response and biomarkers of inflammation were induced at the mRNA level, indicating a proinflammatory state. Thus, the aim of this study was to evaluate the induction of proinflammatory molecules at the protein level in PBMCs exposed to p,p'-DDE "in vitro". The main finding was that "in vitro" exposure to p,p'-DDE enhanced the expression of proinflammatory cytokines (TNF-α, IL-1ß, IL-6) at the protein level in PBMCs. We also observed COX-2 induction at the protein level. Considering that p,p'-DDE has been identified as a persistent metabolite and is frequently found in the population, it is important to evaluate early inflammation biomarkers in populations exposed to DDT and to estimate the true risk of inflammatory disease development.


Subject(s)
Cytokines/biosynthesis , DDT/metabolism , Dichlorodiphenyl Dichloroethylene/toxicity , Environmental Pollutants/toxicity , Leukocytes, Mononuclear/drug effects , Adult , Blotting, Western , Cell Culture Techniques , Cell Survival/drug effects , Cell Survival/immunology , Cells, Cultured , Cytokines/immunology , Dose-Response Relationship, Drug , Humans , Leukocytes, Mononuclear/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL